Flexible micro-supercapacitors from laser-induced graphene and gel polymer electrolytes

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-11-27 DOI:10.1016/j.est.2024.114797
Zhitong Xu , Ming Liu , Yulin Zhang , Fuqian Yang
{"title":"Flexible micro-supercapacitors from laser-induced graphene and gel polymer electrolytes","authors":"Zhitong Xu ,&nbsp;Ming Liu ,&nbsp;Yulin Zhang ,&nbsp;Fuqian Yang","doi":"10.1016/j.est.2024.114797","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid progress in the development and implementation of smart electronics and flexible devices has stimulated the need to produce energy storage units of high efficiency at low cost. In this work, we use laser-induced graphene to construct in-plane micro-supercapacitors (μ-SCs) and delve into the effects of inter-finger spacing, finger width, deformation state, and temperature on the electrochemical performance of the μ-SCs with five different gel polymer electrolytes made from H<sub>2</sub>SO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub>, KOH, NaOH, and NaCl, respectively. The μ-SCs with the electrolyte from the PVA/H<sub>2</sub>SO<sub>4</sub> gel polymer exhibit the best performance under bending and torsion. Increasing temperature causes a slight increase of the specific areal capacitance. Increasing the inter-finger spacing reduces the specific areal capacitance, and the finger width has a limited effect on the specific areal capacitance. The capacitance retention of the μ-SCs with the electrolyte from the PVA/H<sub>2</sub>SO<sub>4</sub> gel polymer is 94.24 % of the initial capacitance after 10,000 electrochemical cycles at a scan rate of 0.1 V/s. The specific areal capacitance of integrated μ-SCs constructed from individual μ-SCs with the PVA/H<sub>2</sub>SO<sub>4</sub> gel polymer is inversely proportional to the number of μ-SCs for the series connection and proportional to the number of μ-SCs for the parallel connection. This study provides a feasible method to produce flexible μ-SCs of high efficiency at low cost.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"105 ","pages":"Article 114797"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24043834","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid progress in the development and implementation of smart electronics and flexible devices has stimulated the need to produce energy storage units of high efficiency at low cost. In this work, we use laser-induced graphene to construct in-plane micro-supercapacitors (μ-SCs) and delve into the effects of inter-finger spacing, finger width, deformation state, and temperature on the electrochemical performance of the μ-SCs with five different gel polymer electrolytes made from H2SO4, H3PO4, KOH, NaOH, and NaCl, respectively. The μ-SCs with the electrolyte from the PVA/H2SO4 gel polymer exhibit the best performance under bending and torsion. Increasing temperature causes a slight increase of the specific areal capacitance. Increasing the inter-finger spacing reduces the specific areal capacitance, and the finger width has a limited effect on the specific areal capacitance. The capacitance retention of the μ-SCs with the electrolyte from the PVA/H2SO4 gel polymer is 94.24 % of the initial capacitance after 10,000 electrochemical cycles at a scan rate of 0.1 V/s. The specific areal capacitance of integrated μ-SCs constructed from individual μ-SCs with the PVA/H2SO4 gel polymer is inversely proportional to the number of μ-SCs for the series connection and proportional to the number of μ-SCs for the parallel connection. This study provides a feasible method to produce flexible μ-SCs of high efficiency at low cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光诱导石墨烯和凝胶聚合物电解质制成的柔性微型超级电容器
智能电子产品和柔性设备的开发与应用取得了突飞猛进的进展,这激发了人们对低成本高效率储能装置的需求。在这项工作中,我们利用激光诱导石墨烯构建了面内微型超级电容器(μ-SC),并深入研究了指间间距、指宽、变形状态和温度对分别采用 H2SO4、H3PO4、KOH、NaOH 和 NaCl 制成的五种不同凝胶聚合物电解质的μ-SC 的电化学性能的影响。使用 PVA/H2SO4 凝胶聚合物电解质的 μ-SCs 在弯曲和扭转下表现出最佳性能。温度升高会使比面积电容略有增加。增加指间距会降低比面积电容,而指宽对比值电容的影响有限。使用 PVA/H2SO4 凝胶聚合物电解质的 μ-SCs 在 0.1 V/s 的扫描速率下进行 10,000 次电化学循环后,其电容保持率为初始电容的 94.24%。用 PVA/H2SO4 凝胶聚合物从单个 μ-SC 构建的集成 μ-SC 的比面积电容与串联的 μ-SC 数量成反比,与并联的 μ-SC 数量成正比。这项研究为生产高效、低成本的柔性 μ-SC 提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Editorial Board Synthesis and fabrication of tetragonal copper chromite nanospheres for usage as the cathode material in asymmetric supercapacitors Restricted growth of polyaniline nanofiber arrays between holey graphene sheets on carbon cloth towards improved charge storage capacity Modified poly(vinylidene fluoride) polymer binder enables ultrathin sulfide solid electrolyte membrane for all-solid-state batteries In-situ micro-battery etching induced 3D Zn with amorphous interfacial coating for high-stable Zn metal batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1