Optimization of silica-doped BxCyNz monolayer anode for high-performance potassium metal batteries through modeling study

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Physica B-condensed Matter Pub Date : 2024-11-19 DOI:10.1016/j.physb.2024.416756
Mohamed J. Saadh , Anjan Kumar , Deepak Bhanot , Jayanti Makasana , Halijah Hassan , Bharti Kumari , G.V. Siva Prasad , Mohammad Hussen , Abdulrahman A. Almehizia
{"title":"Optimization of silica-doped BxCyNz monolayer anode for high-performance potassium metal batteries through modeling study","authors":"Mohamed J. Saadh ,&nbsp;Anjan Kumar ,&nbsp;Deepak Bhanot ,&nbsp;Jayanti Makasana ,&nbsp;Halijah Hassan ,&nbsp;Bharti Kumari ,&nbsp;G.V. Siva Prasad ,&nbsp;Mohammad Hussen ,&nbsp;Abdulrahman A. Almehizia","doi":"10.1016/j.physb.2024.416756","DOIUrl":null,"url":null,"abstract":"<div><div>Within this piece of research, the performances of pure B<sub>2</sub>CN<sub>3</sub> nanosheet (PB<sub>2</sub>CN<sub>3</sub>NS) and its doped structure with Si atoms (SB<sub>2</sub>CN<sub>3</sub>NS) as the anode materials of K-ion batteries (KIBs) were investigated using DFT. The findings showed that PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS are highly capable of adsorbing K with acceptable adhesion energy (AE). Also, because of the negative adhesion of K<sup>+</sup>, in comparison with K, K<sup>+</sup> donated more electrons on PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS. Based on the results, SB<sub>2</sub>CN<sub>3</sub>NS provided an ideal condition for the K atoms to migrate on the surfaces of PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS because of their lower energy barrier. The computed theoretical storage capacity was approximately 1347 mAh.g<sup>−1</sup> after the adhesion maximum K atoms onto PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS. This value is higher the values reported for many anodes materials fabricant in recent years. The open circuit voltage (V<sub>OC</sub>) of PB<sub>2</sub>CN<sub>3</sub>NS and SB<sub>2</sub>CN<sub>3</sub>NS were also found to be low, which were 0.19 and 0.25 V, respectively. The outcomes within this study can provide useful insights into producing highly efficient anodes for KIBs.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"698 ","pages":"Article 416756"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624010974","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Within this piece of research, the performances of pure B2CN3 nanosheet (PB2CN3NS) and its doped structure with Si atoms (SB2CN3NS) as the anode materials of K-ion batteries (KIBs) were investigated using DFT. The findings showed that PB2CN3NS and SB2CN3NS are highly capable of adsorbing K with acceptable adhesion energy (AE). Also, because of the negative adhesion of K+, in comparison with K, K+ donated more electrons on PB2CN3NS and SB2CN3NS. Based on the results, SB2CN3NS provided an ideal condition for the K atoms to migrate on the surfaces of PB2CN3NS and SB2CN3NS because of their lower energy barrier. The computed theoretical storage capacity was approximately 1347 mAh.g−1 after the adhesion maximum K atoms onto PB2CN3NS and SB2CN3NS. This value is higher the values reported for many anodes materials fabricant in recent years. The open circuit voltage (VOC) of PB2CN3NS and SB2CN3NS were also found to be low, which were 0.19 and 0.25 V, respectively. The outcomes within this study can provide useful insights into producing highly efficient anodes for KIBs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过建模研究优化用于高性能金属钾电池的二氧化硅掺杂 BxCyNz 单层阳极
在这项研究中,使用 DFT 研究了纯 B2CN3 纳米片(PB2CN3NS)及其掺杂硅原子结构(SB2CN3NS)作为 K 离子电池(KIB)阳极材料的性能。研究结果表明,PB2CN3NS 和 SB2CN3NS 能够以可接受的粘附能 (AE) 吸附 K。同时,由于 K+ 的负粘附性,与 K 相比,K+ 在 PB2CN3NS 和 SB2CN3NS 上捐献了更多的电子。根据研究结果,SB2CN3NS 由于能垒较低,为 K 原子在 PB2CN3NS 和 SB2CN3NS 表面迁移提供了理想条件。在 PB2CN3NS 和 SB2CN3NS 上粘附最大 K 原子后,计算得出的理论存储容量约为 1347 mAh.g-1。这一数值高于近年来许多阳极材料的报告值。PB2CN3NS 和 SB2CN3NS 的开路电压(VOC)也较低,分别为 0.19 V 和 0.25 V。这项研究的成果为生产高效的 KIB 阳极提供了有益的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
期刊最新文献
Microstructural, optical, and impedance studies of porous Mn-α-Fe2O3/CuO/Ag heterostructures grown using solution-based methods Effects of film thickness on the superconductivity of LaSi2(00l)/Si(100) films Heusler-based topological quantum catalyst Fe2VAl with obstructed surface states for the hydrogen-evolution reaction Synthetically modified mixed phase inverse spinel CuFe2O4 magnetic nanoparticles: Structure, physical, and electrochemical properties for photocatalytic applications Polarization-independent ultranarrow ultraviolet graphene perfect absorption for temperature controlled high-performance optical switch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1