Optimization of CTS thin film solar cell: A numerical investigation based on USP deposited thin films

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Physica B-condensed Matter Pub Date : 2024-11-16 DOI:10.1016/j.physb.2024.416751
Sabina Rahaman , Monoj Kumar Singha , Paramita Sarkar , M. Anantha Sunil , Kaustab Ghosh
{"title":"Optimization of CTS thin film solar cell: A numerical investigation based on USP deposited thin films","authors":"Sabina Rahaman ,&nbsp;Monoj Kumar Singha ,&nbsp;Paramita Sarkar ,&nbsp;M. Anantha Sunil ,&nbsp;Kaustab Ghosh","doi":"10.1016/j.physb.2024.416751","DOIUrl":null,"url":null,"abstract":"<div><div>CTS (Cu<sub>2</sub>SnS<sub>3</sub>) can be used in the next generation of thin-film solar cells due to its non-toxicity, affordability, and natural availability. CTS has a direct bandgap, high absorption coefficient, making it an attractive and environmentally friendly choice for fabrication of solar cells. Ultrasonic spray pyrolysis is used to deposit CTS (absorber layer) and ZnS (buffer layer) films and they are characterized by XRD, SEM and UV–Vis spectroscopy. Based on experimental results, numerical simulation has been performed using SCAPS 1D. FTO/CTS/ZnS/Ag is the structure of device, where Ag act as an electrode. In this paper, a study is carried out to investigate the effects of thickness, doping concentrations in CTS and ZnS layer, working temperatures, bandgap variations, and defect densities on these solar cells. At the temperature of 300K, the proposed cell exhibits a power conversion efficiency of 8.25 %, open circuit voltage 0.4252V, short circuit current 24.82 mA/cm<sup>2</sup>, FF 78.18 % respectively.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"698 ","pages":"Article 416751"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624010925","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

CTS (Cu2SnS3) can be used in the next generation of thin-film solar cells due to its non-toxicity, affordability, and natural availability. CTS has a direct bandgap, high absorption coefficient, making it an attractive and environmentally friendly choice for fabrication of solar cells. Ultrasonic spray pyrolysis is used to deposit CTS (absorber layer) and ZnS (buffer layer) films and they are characterized by XRD, SEM and UV–Vis spectroscopy. Based on experimental results, numerical simulation has been performed using SCAPS 1D. FTO/CTS/ZnS/Ag is the structure of device, where Ag act as an electrode. In this paper, a study is carried out to investigate the effects of thickness, doping concentrations in CTS and ZnS layer, working temperatures, bandgap variations, and defect densities on these solar cells. At the temperature of 300K, the proposed cell exhibits a power conversion efficiency of 8.25 %, open circuit voltage 0.4252V, short circuit current 24.82 mA/cm2, FF 78.18 % respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化 CTS 薄膜太阳能电池:基于 USP 沉积薄膜的数值研究
由于 CTS(Cu2SnS3)无毒、价格低廉且天然可用,因此可用于下一代薄膜太阳能电池。CTS 具有直接带隙和高吸收系数,使其成为制造太阳能电池的一个有吸引力的环保选择。利用超声波喷雾热解沉积 CTS(吸收层)和 ZnS(缓冲层)薄膜,并通过 XRD、SEM 和紫外可见光谱对其进行表征。根据实验结果,使用 SCAPS 1D 进行了数值模拟。FTO/CTS/ZnS/Ag 是器件的结构,其中 Ag 充当电极。本文研究了 CTS 和 ZnS 层的厚度、掺杂浓度、工作温度、带隙变化和缺陷密度对这些太阳能电池的影响。在 300K 温度下,所提出的电池的功率转换效率为 8.25%,开路电压为 0.4252V,短路电流为 24.82 mA/cm2,FF 为 78.18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
期刊最新文献
Microstructural, optical, and impedance studies of porous Mn-α-Fe2O3/CuO/Ag heterostructures grown using solution-based methods Effects of film thickness on the superconductivity of LaSi2(00l)/Si(100) films Heusler-based topological quantum catalyst Fe2VAl with obstructed surface states for the hydrogen-evolution reaction Synthetically modified mixed phase inverse spinel CuFe2O4 magnetic nanoparticles: Structure, physical, and electrochemical properties for photocatalytic applications Polarization-independent ultranarrow ultraviolet graphene perfect absorption for temperature controlled high-performance optical switch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1