Analytical model for DG-AlGaN/GaN MOS-HEMT for sensitive analysis of pH analytes and charged biomolecules

P. Sriramani , N. Mohankumar , Lignesh Durai , Y. Prasamsha , Nitin Rakesh
{"title":"Analytical model for DG-AlGaN/GaN MOS-HEMT for sensitive analysis of pH analytes and charged biomolecules","authors":"P. Sriramani ,&nbsp;N. Mohankumar ,&nbsp;Lignesh Durai ,&nbsp;Y. Prasamsha ,&nbsp;Nitin Rakesh","doi":"10.1016/j.sintl.2024.100312","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces an analytical model for double-gate AlGaN/GaN MOS-HEMT biosensors to accurately detect pH analytes and charged biomolecules. The device incorporates nanocavities and operates on the concept of dielectric modulation, presuming the presence of a native oxide layer on the surface of the AlGaN layer. The pH of the analyte is represented as the interface charge. Numerical simulations evaluate the biosensor's effectiveness by analyzing its sensitivity to drain ON current (S<sub>I</sub>) and threshold voltage (S<sub>V</sub>). The device exhibited a peak S<sub>V</sub> of 586.5 mV, a value tenfold more significant than the Nernst limit for pH analyte. The maximum S<sub>I</sub>, computed at the peak transconductance, was determined to be 135.5 mA/mm/pH at V<sub>G</sub> = −2V and V<sub>D</sub> = 5V. The biosensor response to a charged biomolecule is assessed by considering the dielectric constant and charge density (ρ). The biosensor exhibited a maximum S<sub>I</sub> of 0.225 at V<sub>D</sub> = 5V and V<sub>G</sub> = −1V and S<sub>V</sub> of 1.488V for charged biomolecule at ρ = 1 × 10<sup>12</sup>/cm<sup>2</sup>. The impact of the bias voltages, ion molar concentration of pH analyte, AlGaN layer thickness and cavity length on the S<sub>I</sub> of the device is explored in detail. The S<sub>I</sub> for pH analytes is unaffected by the AlGaN layer thickness but enhanced with ion molar concentration and cavity length. However, for charged biomolecules, S<sub>I</sub> decreased with increased AlGaN layer thickness and improved with cavity length.</div></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":"6 ","pages":"Article 100312"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351124000342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces an analytical model for double-gate AlGaN/GaN MOS-HEMT biosensors to accurately detect pH analytes and charged biomolecules. The device incorporates nanocavities and operates on the concept of dielectric modulation, presuming the presence of a native oxide layer on the surface of the AlGaN layer. The pH of the analyte is represented as the interface charge. Numerical simulations evaluate the biosensor's effectiveness by analyzing its sensitivity to drain ON current (SI) and threshold voltage (SV). The device exhibited a peak SV of 586.5 mV, a value tenfold more significant than the Nernst limit for pH analyte. The maximum SI, computed at the peak transconductance, was determined to be 135.5 mA/mm/pH at VG = −2V and VD = 5V. The biosensor response to a charged biomolecule is assessed by considering the dielectric constant and charge density (ρ). The biosensor exhibited a maximum SI of 0.225 at VD = 5V and VG = −1V and SV of 1.488V for charged biomolecule at ρ = 1 × 1012/cm2. The impact of the bias voltages, ion molar concentration of pH analyte, AlGaN layer thickness and cavity length on the SI of the device is explored in detail. The SI for pH analytes is unaffected by the AlGaN layer thickness but enhanced with ion molar concentration and cavity length. However, for charged biomolecules, SI decreased with increased AlGaN layer thickness and improved with cavity length.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于灵敏分析 pH 值分析物和带电生物分子的 DG-AlGaN/GaN MOS-HEMT 分析模型
本文介绍了双栅 AlGaN/GaN MOS-HEMT 生物传感器的分析模型,以准确检测 pH 值分析物和带电生物分子。该器件结合了纳米腔体,根据介电调制的概念运行,假定 AlGaN 层表面存在原生氧化物层。分析物的 pH 值表示为界面电荷。数值模拟通过分析生物传感器对漏极导通电流(SI)和阈值电压(SV)的灵敏度来评估其有效性。该器件的 SV 峰值为 586.5 mV,比 pH 值分析物的 Nernst 极限值高出十倍。在 VG = -2V 和 VD = 5V 时,根据峰值跨导计算得出的最大 SI 为 135.5 mA/mm/pH。生物传感器对带电生物分子的响应是通过考虑介电常数和电荷密度(ρ)来评估的。当 VD = 5V 和 VG = -1V 时,生物传感器对带电生物分子的最大 SI 值为 0.225;当 ρ = 1 × 1012/cm2 时,生物传感器对带电生物分子的最大 SV 值为 1.488V。我们详细探讨了偏置电压、pH 值分析物的离子摩尔浓度、AlGaN 层厚度和空腔长度对器件 SI 的影响。pH 值分析物的 SI 不受 AlGaN 层厚度的影响,但随着离子摩尔浓度和空腔长度的增加而增强。然而,对于带电的生物分子,SI 随 AlGaN 层厚度的增加而降低,但随空腔长度的增加而提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
期刊最新文献
Analytical model for DG-AlGaN/GaN MOS-HEMT for sensitive analysis of pH analytes and charged biomolecules Fabrication of a non-enzymatic photoelectrochemical sensor based on a BiOBr-CuO nanocomposite for detecting Glucose and Tetracycline A portable easy-to-use triboelectric sensor for arteriovenous fistula monitoring in dialysis patients Photocatalytic and electrochemical sensor detection of ascorbic and uric acid using novel plant extract green synthesis of CaO nanoparticles Dual-channel infrared OPO lidar optical system for remote sensing of greenhouse gases in the atmosphere: Design and characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1