{"title":"Microstructural and tribological properties of multilayered coatings developed through heat treatment on the surface of CP-Ti","authors":"Morteza Abedini, Stefanie Hanke","doi":"10.1016/j.surfcoat.2024.131590","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known that applying Ni<img>Ti intermetallic coatings on the surface of different alloys can improve their tribological behavior. In this paper, various intermetallic phases of Ni<sub>3</sub>Ti, NiTi, and NiTi<sub>2</sub> and a Ti-rich pearlite-like eutectoid structure were in situ synthesized on the surface of commercially pure (CP) titanium grade 2. Nickel electroplating was performed on titanium samples followed by heat treatment at a temperature of 800 °C for various times up to 8 h. The formation of various phases and structures along the depth were studied using SEM, EDS and XRD. Heat treatment at a temperature of 800 °C for 4 h resulted in the formation of a multi-layered composite of Ni<sub>3</sub>Ti, NiTi, and NiTi<sub>2</sub> intermetallic films with a thickness of 5, 9, and 2 μm, respectively. A nickel diffusion layer (NDL) with a pearlitic structure containing nanolayers of αTi-NiTi<sub>2</sub> was also formed beneath the NiTi<sub>2</sub> layer even after 30 min of heating. Among the different layers formed on the surface of CP-Ti, the titanium-rich NiTi (51–52 at.% Ti) showed the highest hardness of more than 400 HV. Sliding wear tests were performed under a normal load of 10 N and the surfaces of wear tracks were studied using SEM. The results showed higher wear resistance of all intermetallic layers and NDL than the titanium substrate, with the highest wear resistance for Ni<sub>3</sub>Ti top layer.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"495 ","pages":"Article 131590"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224012210","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that applying NiTi intermetallic coatings on the surface of different alloys can improve their tribological behavior. In this paper, various intermetallic phases of Ni3Ti, NiTi, and NiTi2 and a Ti-rich pearlite-like eutectoid structure were in situ synthesized on the surface of commercially pure (CP) titanium grade 2. Nickel electroplating was performed on titanium samples followed by heat treatment at a temperature of 800 °C for various times up to 8 h. The formation of various phases and structures along the depth were studied using SEM, EDS and XRD. Heat treatment at a temperature of 800 °C for 4 h resulted in the formation of a multi-layered composite of Ni3Ti, NiTi, and NiTi2 intermetallic films with a thickness of 5, 9, and 2 μm, respectively. A nickel diffusion layer (NDL) with a pearlitic structure containing nanolayers of αTi-NiTi2 was also formed beneath the NiTi2 layer even after 30 min of heating. Among the different layers formed on the surface of CP-Ti, the titanium-rich NiTi (51–52 at.% Ti) showed the highest hardness of more than 400 HV. Sliding wear tests were performed under a normal load of 10 N and the surfaces of wear tracks were studied using SEM. The results showed higher wear resistance of all intermetallic layers and NDL than the titanium substrate, with the highest wear resistance for Ni3Ti top layer.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.