Size scalability of Monte Carlo simulations applied to oxidized polypyrrole systems

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-11-27 DOI:10.1016/j.commatsci.2024.113538
Greg Helmick, Yoseph Abere, Estela Blaisten-Barojas
{"title":"Size scalability of Monte Carlo simulations applied to oxidized polypyrrole systems","authors":"Greg Helmick,&nbsp;Yoseph Abere,&nbsp;Estela Blaisten-Barojas","doi":"10.1016/j.commatsci.2024.113538","DOIUrl":null,"url":null,"abstract":"<div><div>Oxidized polypyrrole (PPy) is a conducting polymer with diverse applications such as supercapacitors, sensors, batteries, actuators, neural prosthetics, among others. PPy is most commonly synthesized for the specific application yielding low molecular weight oligomers that form amorphous polymer matrices. Hence, molecular simulation analyses are challenging. This work generalizes the recently proposed coarse grained force field (CGFF) for halogen oxidized PPy in the condensed phases and introduces a novel implementation of the Monte Carlo (MC) simulation based on the CGFF that enables simulations of polymer systems with more than 100000 particles. The MC implementation utilizes a combination of CPU and GPUs and exploits a numerical approximation based on polynomial piecewise interpolation for the calculation of the CGFF pairwise additive terms. The MC simulations evidence that the oxidized PPy thermodynamic and structural properties are consistent as the system size is scaled up. Predicted properties include density, enthalpy, potential energy, heat capacity, coefficient of thermal expansion, caloric curve, glass transition temperature range, compressibility, bulk modulus, radial distribution functions, and polymer chain characteristics. The oxidized PPy samples display oligomer chain stacking that persists with temperatures up to the glass transition. Simulated properties are consistent with experimental observations when available and predict trends in all other cases.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113538"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007596","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidized polypyrrole (PPy) is a conducting polymer with diverse applications such as supercapacitors, sensors, batteries, actuators, neural prosthetics, among others. PPy is most commonly synthesized for the specific application yielding low molecular weight oligomers that form amorphous polymer matrices. Hence, molecular simulation analyses are challenging. This work generalizes the recently proposed coarse grained force field (CGFF) for halogen oxidized PPy in the condensed phases and introduces a novel implementation of the Monte Carlo (MC) simulation based on the CGFF that enables simulations of polymer systems with more than 100000 particles. The MC implementation utilizes a combination of CPU and GPUs and exploits a numerical approximation based on polynomial piecewise interpolation for the calculation of the CGFF pairwise additive terms. The MC simulations evidence that the oxidized PPy thermodynamic and structural properties are consistent as the system size is scaled up. Predicted properties include density, enthalpy, potential energy, heat capacity, coefficient of thermal expansion, caloric curve, glass transition temperature range, compressibility, bulk modulus, radial distribution functions, and polymer chain characteristics. The oxidized PPy samples display oligomer chain stacking that persists with temperatures up to the glass transition. Simulated properties are consistent with experimental observations when available and predict trends in all other cases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于氧化聚吡咯系统的蒙特卡罗模拟的尺寸可扩展性
氧化聚吡咯(PPy)是一种导电聚合物,可广泛应用于超级电容器、传感器、电池、致动器和神经假肢等领域。PPy 通常是为特定应用而合成的,生成的低分子量低聚物会形成无定形聚合物基质。因此,分子模拟分析具有挑战性。本研究将最近提出的粗粒度力场(CGFF)推广应用于凝结相中的卤素氧化 PPy,并介绍了基于粗粒度力场的蒙特卡罗(MC)模拟的新实施方案,该方案可模拟超过 100000 个粒子的聚合物体系。MC 实现结合使用了 CPU 和 GPU,并利用基于多项式分段插值的数值近似来计算 CGFF 的成对相加项。MC 模拟证明,随着系统规模的扩大,氧化 PPy 的热力学和结构特性是一致的。预测的特性包括密度、焓、势能、热容量、热膨胀系数、热量曲线、玻璃化转变温度范围、可压缩性、体积模量、径向分布函数和聚合物链特性。氧化 PPy 样品显示出低聚物链堆叠现象,这种现象一直持续到玻璃化转变温度。模拟特性与实验观察结果一致,并预测了所有其他情况下的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Prediction of TMCCs@MoS2 heterostructures with homogeneous surface terminations as promising anodes for sodium and potassium ion batteries Energetic and structural stability of vacancy clusters in Al under external stress conditions First-Principles study for the influence of ion vacancies on the doped Cr3+ and transition dipole moment in anti-perovskite structure La3(SiN2O2)N Thermal conductivity predictions in monolayer MoSi2N4: Integrating neural network potentials with phonon scattering analysis First-principles study on TiC/TiN heterogeneous nucleation interface in high-titanium steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1