High impact resistance and energy absorption composite reinforced via shear thickening gel/angle interlocking for flexible wearable protective

IF 6.5 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Communications Pub Date : 2024-11-24 DOI:10.1016/j.coco.2024.102181
Zixuan Liu , Xiayun Zhang , Yuwei Zhao , Yican Wang , Hongwei Tian , Lixia Jia , Bao Shi , Zhenhong Chen , Ruosi Yan
{"title":"High impact resistance and energy absorption composite reinforced via shear thickening gel/angle interlocking for flexible wearable protective","authors":"Zixuan Liu ,&nbsp;Xiayun Zhang ,&nbsp;Yuwei Zhao ,&nbsp;Yican Wang ,&nbsp;Hongwei Tian ,&nbsp;Lixia Jia ,&nbsp;Bao Shi ,&nbsp;Zhenhong Chen ,&nbsp;Ruosi Yan","doi":"10.1016/j.coco.2024.102181","DOIUrl":null,"url":null,"abstract":"<div><div>The study reveals the combination of shear thickening gel (STG) with angle interlocking fabrics with different thickness direction binding modes to prepare flexible composites. The effect of thickness direction binding modes on flexible composites' ballistic performance and failure mechanisms are systematically investigated. The results reveal that the bullet penetrates STG and yarn simultaneously during the impact phase, causing STG to produce the shear thickening effect. Flexible composites produce synergistic energy absorption. The layer-to-layer structure has a 4.49 % higher ballistic limit than the through-thickness structure, proving superior impact resistance. This investigation aims to enhance the design of lightweight ballistic composites by examining the failure mechanisms of flexible composites in response to ballistic impacts.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"53 ","pages":"Article 102181"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924003723","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The study reveals the combination of shear thickening gel (STG) with angle interlocking fabrics with different thickness direction binding modes to prepare flexible composites. The effect of thickness direction binding modes on flexible composites' ballistic performance and failure mechanisms are systematically investigated. The results reveal that the bullet penetrates STG and yarn simultaneously during the impact phase, causing STG to produce the shear thickening effect. Flexible composites produce synergistic energy absorption. The layer-to-layer structure has a 4.49 % higher ballistic limit than the through-thickness structure, proving superior impact resistance. This investigation aims to enhance the design of lightweight ballistic composites by examining the failure mechanisms of flexible composites in response to ballistic impacts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高抗冲击性和能量吸收复合材料通过剪切增厚凝胶/角交错加固,可提供灵活的可穿戴保护
该研究揭示了将剪切增稠凝胶(STG)与具有不同厚度方向结合模式的角交错织物相结合来制备柔性复合材料的方法。系统研究了厚度方向结合模式对柔性复合材料弹道性能和失效机理的影响。结果表明,子弹在冲击阶段同时穿透 STG 和纱线,使 STG 产生剪切增厚效应。柔性复合材料能协同吸收能量。层间结构的弹道极限比贯通结构高出 4.49%,证明了其卓越的抗冲击性。这项研究旨在通过研究柔性复合材料在应对弹道冲击时的失效机理,提高轻质弹道复合材料的设计水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
期刊最新文献
Research on the anti-frost performance of hydrophobic TiN-polymer composite coating on aluminum alloy surface Multiscale study on the synergistic effect of interface heat transfer and filler structure on enhancing the thermal conductivity of boron nitride/alumina/polyurethane composites High-reliable polyurethane modified epoxy photosensitive composites for solder resist applications High impact resistance and energy absorption composite reinforced via shear thickening gel/angle interlocking for flexible wearable protective Mechanical recycling and performance characterisation of insert-injection moulded homo-polypropylene single-polymer composites and foams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1