Modulation of OPC Mitochondrial Function by Inhibiting USP30 Promotes Their Differentiation.

IF 5.4 2区 医学 Q1 NEUROSCIENCES Glia Pub Date : 2024-11-27 DOI:10.1002/glia.24648
Allison L Soung, Roxanne V Kyauk, Shristi Pandey, Yun-An A Shen, Mike Reichelt, Han Lin, Zhiyu Jiang, Praveen Kirshnamoorthy, Oded Foreman, Benjamin E Lauffer, Tracy J Yuen
{"title":"Modulation of OPC Mitochondrial Function by Inhibiting USP30 Promotes Their Differentiation.","authors":"Allison L Soung, Roxanne V Kyauk, Shristi Pandey, Yun-An A Shen, Mike Reichelt, Han Lin, Zhiyu Jiang, Praveen Kirshnamoorthy, Oded Foreman, Benjamin E Lauffer, Tracy J Yuen","doi":"10.1002/glia.24648","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple lines of evidence indicate that mitochondrial dysfunction occurs in demyelinating diseases, such as multiple sclerosis (MS). Failure of remyelination is thought to be caused in part by a block of oligodendrocyte progenitor cell (OPC) differentiation into oligodendrocytes, which generate myelin sheaths around axons. The process of OPC differentiation requires a substantial amount of energy and high demand for ATP which is supplied through the mitochondria. In this study, we highlight mitochondrial gene expression changes during OPC differentiation in two murine models of remyelination and in human postmortem MS brains. Given these transcriptional alterations, we then investigate whether genetic alteration of USP30, a mitochondrial deubiquitinase, enhances OPC differentiation and myelination. By genetic knockout of USP30, we observe increased OPC differentiation and myelination without affecting OPC proliferation and survival in in vitro and ex vivo assays. We also find that OPC differentiation is accelerated in vivo following focal demyelination in USP30 knockout mice. The promotion of OPC differentiation and myelination observed is associated with increased oxygen consumption rates in USP30 knockout OPCs. Together, these data indicate a role for mitochondrial function and USP30 in OPC differentiation and myelination.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/glia.24648","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple lines of evidence indicate that mitochondrial dysfunction occurs in demyelinating diseases, such as multiple sclerosis (MS). Failure of remyelination is thought to be caused in part by a block of oligodendrocyte progenitor cell (OPC) differentiation into oligodendrocytes, which generate myelin sheaths around axons. The process of OPC differentiation requires a substantial amount of energy and high demand for ATP which is supplied through the mitochondria. In this study, we highlight mitochondrial gene expression changes during OPC differentiation in two murine models of remyelination and in human postmortem MS brains. Given these transcriptional alterations, we then investigate whether genetic alteration of USP30, a mitochondrial deubiquitinase, enhances OPC differentiation and myelination. By genetic knockout of USP30, we observe increased OPC differentiation and myelination without affecting OPC proliferation and survival in in vitro and ex vivo assays. We also find that OPC differentiation is accelerated in vivo following focal demyelination in USP30 knockout mice. The promotion of OPC differentiation and myelination observed is associated with increased oxygen consumption rates in USP30 knockout OPCs. Together, these data indicate a role for mitochondrial function and USP30 in OPC differentiation and myelination.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过抑制 USP30 调节 OPC 线粒体功能可促进其分化。
多种证据表明,多发性硬化症(MS)等脱髓鞘疾病会导致线粒体功能障碍。髓鞘再形成失败的部分原因被认为是少突胶质细胞祖细胞(OPC)向少突胶质细胞分化受阻,而少突胶质细胞可在轴突周围生成髓鞘。OPC 分化过程需要大量能量,对 ATP 的需求很高,而 ATP 是通过线粒体提供的。在本研究中,我们重点研究了两种小鼠再髓鞘化模型和人类死后多发性硬化症大脑中 OPC 分化过程中线粒体基因表达的变化。鉴于这些转录改变,我们随后研究了线粒体去泛素化酶 USP30 的基因改变是否会增强 OPC 分化和髓鞘化。通过基因敲除 USP30,我们观察到 OPC 分化和髓鞘化增强,而不影响体外和体内试验中 OPC 的增殖和存活。我们还发现,USP30基因敲除小鼠在体内发生局灶性脱髓鞘后,OPC分化会加速。观察到的 OPC 分化和髓鞘化的促进与 USP30 基因敲除 OPC 的耗氧量增加有关。这些数据共同表明了线粒体功能和 USP30 在 OPC 分化和髓鞘化过程中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Glia
Glia 医学-神经科学
CiteScore
13.10
自引率
4.80%
发文量
162
审稿时长
3-8 weeks
期刊介绍: GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.
期刊最新文献
Modulation of OPC Mitochondrial Function by Inhibiting USP30 Promotes Their Differentiation. Unboxing "Omics" in Glial Biology to Understand Neurological Disease. Microglia and Astrocytes in Postnatal Neural Circuit Formation. Astrocytic GAT-3 Regulates Synaptic Transmission and Memory Formation in the Dentate Gyrus. All the single cells: Single-cell transcriptomics/epigenomics experimental design and analysis considerations for glial biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1