Overlooked Vital Role of Persistent Algae-Bacteria Interaction in Ocean Recalcitrant Carbon Sequestration and Its Response to Ocean Warming

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2024-11-27 DOI:10.1111/gcb.17570
Hanshuang Zhao, Zenghu Zhang, Shailesh Nair, Hongmei Li, Chen He, Quan Shi, Qiang Zheng, Ruanhong Cai, Genming Luo, Shucheng Xie, Nianzhi Jiao, Yongyu Zhang
{"title":"Overlooked Vital Role of Persistent Algae-Bacteria Interaction in Ocean Recalcitrant Carbon Sequestration and Its Response to Ocean Warming","authors":"Hanshuang Zhao,&nbsp;Zenghu Zhang,&nbsp;Shailesh Nair,&nbsp;Hongmei Li,&nbsp;Chen He,&nbsp;Quan Shi,&nbsp;Qiang Zheng,&nbsp;Ruanhong Cai,&nbsp;Genming Luo,&nbsp;Shucheng Xie,&nbsp;Nianzhi Jiao,&nbsp;Yongyu Zhang","doi":"10.1111/gcb.17570","DOIUrl":null,"url":null,"abstract":"<p>Long-term carbon sequestration by the ocean's recalcitrant dissolved organic carbon (RDOC) pool regulates global climate. Algae and bacteria interactively underpin RDOC formation. However, on the long-term scales, the influence of their persistent interactions close to in situ state on ocean RDOC dynamics and accumulation remains unclear, limiting our understanding of the oceanic RDOC pool formation and future trends under global change. We show that a <i>Synechococcus</i>-bacteria interaction model system viable over 720 days gradually accumulated high DOC concentrations up to 84 mg L<sup>−1</sup>. Concurrently, the DOC inertness increased with the RDOC ratio reaching &gt; 50%. The identified <i>Synechococcus</i>-bacteria-driven RDOC molecules shared similarity with over half of those from pelagic ocean DOC. Importantly, we provide direct genetic and metabolite evidence that alongside the continuous transformation of algal carbon by bacteria to generate RDOC, <i>Synechococcus</i> itself also directly synthesized and released RDOC molecules, representing a neglected RDOC source with ~0.2–1 Gt y<sup>−1</sup> in the ocean. However, we found that although ocean warming (+4°C) can promote algal and bacterial growth and DOC release, it destabilizes and reduces RDOC reservoirs, jeopardizing the ocean's carbon sequestration capacity. This study unveils the previously underestimated yet significant role of algae and long-term algae-bacteria interactions in ocean carbon sequestration and its vulnerability to ocean warming.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 11","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.17570","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17570","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Long-term carbon sequestration by the ocean's recalcitrant dissolved organic carbon (RDOC) pool regulates global climate. Algae and bacteria interactively underpin RDOC formation. However, on the long-term scales, the influence of their persistent interactions close to in situ state on ocean RDOC dynamics and accumulation remains unclear, limiting our understanding of the oceanic RDOC pool formation and future trends under global change. We show that a Synechococcus-bacteria interaction model system viable over 720 days gradually accumulated high DOC concentrations up to 84 mg L−1. Concurrently, the DOC inertness increased with the RDOC ratio reaching > 50%. The identified Synechococcus-bacteria-driven RDOC molecules shared similarity with over half of those from pelagic ocean DOC. Importantly, we provide direct genetic and metabolite evidence that alongside the continuous transformation of algal carbon by bacteria to generate RDOC, Synechococcus itself also directly synthesized and released RDOC molecules, representing a neglected RDOC source with ~0.2–1 Gt y−1 in the ocean. However, we found that although ocean warming (+4°C) can promote algal and bacterial growth and DOC release, it destabilizes and reduces RDOC reservoirs, jeopardizing the ocean's carbon sequestration capacity. This study unveils the previously underestimated yet significant role of algae and long-term algae-bacteria interactions in ocean carbon sequestration and its vulnerability to ocean warming.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
被忽视的持久性藻类-细菌相互作用在海洋固碳中的重要作用及其对海洋变暖的响应。
海洋难溶有机碳(RDOC)池的长期碳固存调节着全球气候。藻类和细菌相互作用,是 RDOC 形成的基础。然而,在长期尺度上,它们接近原位状态的持续互动对海洋 RDOC 动态和积累的影响仍不清楚,这限制了我们对海洋 RDOC 池形成和全球变化下未来趋势的理解。我们的研究表明,一个能存活 720 天的 Synechococcus-细菌相互作用模型系统逐渐积累了高达 84 mg L-1 的高浓度 DOC。与此同时,DOC 的惰性增加,RDOC 比率大于 50%。经鉴定,由球藻细菌驱动的 RDOC 分子与海洋浮游 DOC 中一半以上的分子具有相似性。重要的是,我们提供了直接的遗传和代谢物证据,证明在细菌持续转化藻类碳以产生 RDOC 的同时,球藻本身也直接合成和释放 RDOC 分子,是海洋中约 0.2-1 Gt y-1 的被忽视的 RDOC 来源。然而,我们发现,虽然海洋变暖(+4°C)可以促进藻类和细菌的生长以及 DOC 的释放,但它会破坏 RDOC 储库的稳定性并使其减少,从而危及海洋的固碳能力。这项研究揭示了藻类以及藻类与细菌的长期相互作用在海洋固碳中被低估的重要作用,以及在海洋变暖中的脆弱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Overcoming Shifting Baselines: Paleo-Behaviour Reveals Industrial Revolution as Tipping Point Paleoecology Perspectives for Planetary Health The Interactive Role of Climatic Transfer Distance and Overstory Retention on Douglas-Fir Seedling Survival and Height Growth in Interior British Columbia Vegetation Types Shift Physiological and Phenological Controls on Carbon Sink Strength in a Coastal Zone Persistent Effects of Landscape Context on Recruitment Dynamics During Secondary Succession of Tropical Forests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1