Controllable Microwave Heating for Energy-Efficient and Universal Synthesis of Atomically Dispersed Metals on Nitrogen-Doped Carbon Nanofibers.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-11-27 DOI:10.1002/smll.202407700
Haoyue Zhao, Beibei Song, Han Li, Xinyu Li, Can Ge, Qilong Wu, Jun Chen, Zhe Wang, Guilong Yan, Jian Fang
{"title":"Controllable Microwave Heating for Energy-Efficient and Universal Synthesis of Atomically Dispersed Metals on Nitrogen-Doped Carbon Nanofibers.","authors":"Haoyue Zhao, Beibei Song, Han Li, Xinyu Li, Can Ge, Qilong Wu, Jun Chen, Zhe Wang, Guilong Yan, Jian Fang","doi":"10.1002/smll.202407700","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon-supported single-atom catalysts (SACs) have shown great potential in electrocatalysis, whereas traditional synthesis methods typically involve energy-intensive carbonization processes and unfavorable atomic migration and aggregation. Herein, an energy-efficient and universal strategy is developed to rapidly fabricate various SACs on nitrogen-doped hierarchically porous carbon nanofibers (M-TM/NPCNFs, TM = Fe, Co, Ni, FeCo, and FeNi) by electrospinning and controllable microwave heating technique. Such microwave heating technique enables an ultrafast heating rate (ramping to 900 °C in 5 min) to greatly suppress the random migration and aggregation of metal species. Meanwhile, the energy consumption and time can be reduced to 2.5% and less than half an hour, respectively, compared to traditional pyrolysis methods. As a proof of concept, the synthesized M-Fe/NPCNFs with abundant Fe-N<sub>4</sub> sites exhibit remarkable oxygen reduction reaction (ORR) activity with a high half-wave potential (E<sub>1/2</sub> = 0.88 V) in alkaline media, excellent performance in Zn-air battery with a large discharge specific capacity (801 mAh g<sup>-1</sup>) and long-term cycle durability (over 1000 h), demonstrating the great potential of the microwave heating technique in efficient fabrication of SACs for energy related applications.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2407700"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407700","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon-supported single-atom catalysts (SACs) have shown great potential in electrocatalysis, whereas traditional synthesis methods typically involve energy-intensive carbonization processes and unfavorable atomic migration and aggregation. Herein, an energy-efficient and universal strategy is developed to rapidly fabricate various SACs on nitrogen-doped hierarchically porous carbon nanofibers (M-TM/NPCNFs, TM = Fe, Co, Ni, FeCo, and FeNi) by electrospinning and controllable microwave heating technique. Such microwave heating technique enables an ultrafast heating rate (ramping to 900 °C in 5 min) to greatly suppress the random migration and aggregation of metal species. Meanwhile, the energy consumption and time can be reduced to 2.5% and less than half an hour, respectively, compared to traditional pyrolysis methods. As a proof of concept, the synthesized M-Fe/NPCNFs with abundant Fe-N4 sites exhibit remarkable oxygen reduction reaction (ORR) activity with a high half-wave potential (E1/2 = 0.88 V) in alkaline media, excellent performance in Zn-air battery with a large discharge specific capacity (801 mAh g-1) and long-term cycle durability (over 1000 h), demonstrating the great potential of the microwave heating technique in efficient fabrication of SACs for energy related applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可控微波加热技术在掺氮碳纳米纤维上实现高能效、通用的原子分散金属合成。
碳支撑单原子催化剂(SACs)在电催化中显示出巨大的潜力,而传统的合成方法通常涉及高能耗的碳化过程以及不利的原子迁移和聚集。本文开发了一种高效节能的通用策略,通过电纺丝和可控微波加热技术在掺氮分层多孔碳纳米纤维(M-TM/NPCNFs,TM = Fe、Co、Ni、FeCo 和 FeNi)上快速制备各种 SAC。这种微波加热技术实现了超高速加热(5 分钟内升温至 900 °C),大大抑制了金属物种的随机迁移和聚集。同时,与传统热解方法相比,能耗和时间可分别减少到 2.5% 和不到半小时。作为概念验证,合成的 M-Fe/NPCNFs 具有丰富的 Fe-N4 位点,在碱性介质中具有显著的氧还原反应(ORR)活性和较高的半波电位(E1/2 = 0.88 V),在锌-空气电池中性能优异,具有较大的放电比容量(801 mAh g-1)和长期循环耐久性(超过 1000 h),表明微波加热技术在高效制备用于能源相关应用的 SACs 方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Reversible Sliding Motion by Hole-Injection in Ammonium-Linked Ferrocene, Electronically Decoupled from Noble Metal Substrate by Crown-Ether Template Layer Resurrecting p53 by an Artificial Nano-Protein for Potent Photodynamic Retinoblastoma Therapy Drastically Promoting Rate Capability via Dual-Cations Intercalation of V2O5 Enabling Rapid Zinc-Ion Storage Recent Advances in Metal Halide Perovskites for CO2 Photocatalytic Reduction: An Overview and Future Prospects Optomagnetic Micromirror Arrays for Mapping Large Area Stiffness Distributions of Biomimetic Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1