{"title":"Taming Prolonged Ionic Drift-Diffusion Dynamics for Brain-Inspired Computation.","authors":"Hisashi Inoue, Hiroto Tamura, Ai Kitoh, Xiangyu Chen, Zolboo Byambadorj, Takeaki Yajima, Yasushi Hotta, Tetsuya Iizuka, Gouhei Tanaka, Isao H Inoue","doi":"10.1002/adma.202407326","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in neural network-based computing have enabled human-like information processing in areas such as image classification and voice recognition. However, many neural networks run on conventional computers that operate at GHz clock frequency and consume considerable power compared to biological neural networks, such as human brains, which work with a much slower spiking rate. Although many electronic devices aiming to emulate the energy efficiency of biological neural networks have been explored, achieving long timescales while maintaining scalability remains an important challenge. In this study, a field-effect transistor based on the oxide semiconductor strontium titanate (SrTiO<sub>3</sub>) achieves leaky integration on a long timescale by leveraging the drift-diffusion of oxygen vacancies in this material. Experimental analysis and finite-element model simulations reveal the mechanism behind the leaky integration of the SrTiO<sub>3</sub> transistor. With a timescale in the order of one second, which is close to that of biological neuron activity, this transistor is a promising component for biomimicking neuromorphic computing.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2407326"},"PeriodicalIF":27.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202407326","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in neural network-based computing have enabled human-like information processing in areas such as image classification and voice recognition. However, many neural networks run on conventional computers that operate at GHz clock frequency and consume considerable power compared to biological neural networks, such as human brains, which work with a much slower spiking rate. Although many electronic devices aiming to emulate the energy efficiency of biological neural networks have been explored, achieving long timescales while maintaining scalability remains an important challenge. In this study, a field-effect transistor based on the oxide semiconductor strontium titanate (SrTiO3) achieves leaky integration on a long timescale by leveraging the drift-diffusion of oxygen vacancies in this material. Experimental analysis and finite-element model simulations reveal the mechanism behind the leaky integration of the SrTiO3 transistor. With a timescale in the order of one second, which is close to that of biological neuron activity, this transistor is a promising component for biomimicking neuromorphic computing.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.