{"title":"Polyamines: The valuable bio-stimulants and endogenous signaling molecules for plant development and stress response.","authors":"Taibo Liu, Jing Qu, Yinyin Fang, Haishan Yang, Wenting Lai, Luyi Pan, Ji-Hong Liu","doi":"10.1111/jipb.13796","DOIUrl":null,"url":null,"abstract":"<p><p>Polyamines (PAs) are nitrogenous and polycationic compounds containing more than two amine residues. Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes. The PA balance, which may be affected by many environmental factors, is finely maintained by the pathways of PA biosynthesis and degradation (catabolism). In this review, the advances in PA transport and distribution and their roles in plants were summarized and discussed. In addition, the interplay between PAs and phytohormones, NO, and H<sub>2</sub>O<sub>2</sub> were detailed during plant growth, senescence, fruit repining, as well as response to biotic and abiotic stresses. Moreover, it was elucidated how environmental signals such as light, temperature, and humidity modulate PA accumulation during plant development. Notably, PA has been shown to exert a potential role in shaping the domestication of rice. The present review comprehensively summarizes these latest advances, highlighting the importance of PAs as endogenous signaling molecules in plants, and as well proposes future perspectives on PA research.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13796","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polyamines (PAs) are nitrogenous and polycationic compounds containing more than two amine residues. Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes. The PA balance, which may be affected by many environmental factors, is finely maintained by the pathways of PA biosynthesis and degradation (catabolism). In this review, the advances in PA transport and distribution and their roles in plants were summarized and discussed. In addition, the interplay between PAs and phytohormones, NO, and H2O2 were detailed during plant growth, senescence, fruit repining, as well as response to biotic and abiotic stresses. Moreover, it was elucidated how environmental signals such as light, temperature, and humidity modulate PA accumulation during plant development. Notably, PA has been shown to exert a potential role in shaping the domestication of rice. The present review comprehensively summarizes these latest advances, highlighting the importance of PAs as endogenous signaling molecules in plants, and as well proposes future perspectives on PA research.
多胺(PA)是含有两个以上胺残基的含氮多阳离子化合物。大量研究表明,细胞多胺平衡在各种发育和生理过程中发挥着关键作用。PA 的平衡可能会受到许多环境因素的影响,它通过 PA 的生物合成和降解(分解)途径来维持。本综述总结并讨论了 PA 转运和分布方面的进展及其在植物中的作用。此外,还详细介绍了 PA 与植物激素、NO 和 H2O2 在植物生长、衰老、果实衰退以及对生物和非生物胁迫的响应过程中的相互作用。此外,研究还阐明了光照、温度和湿度等环境信号如何调节植物生长过程中 PA 的积累。值得注意的是,PA 在水稻驯化过程中发挥着潜在的作用。本综述全面总结了这些最新研究进展,强调了 PA 作为植物内源信号分子的重要性,并提出了 PA 研究的未来展望。
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.