Glutathione Peroxidases: An Emerging and Promising Therapeutic Target for Pancreatic Cancer Treatment.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants Pub Date : 2024-11-16 DOI:10.3390/antiox13111405
Paula Iglesias-Matesanz, Carlos Lacalle-Gonzalez, Carlos Lopez-Blazquez, Michael Ochieng' Otieno, Jesus Garcia-Foncillas, Javier Martinez-Useros
{"title":"Glutathione Peroxidases: An Emerging and Promising Therapeutic Target for Pancreatic Cancer Treatment.","authors":"Paula Iglesias-Matesanz, Carlos Lacalle-Gonzalez, Carlos Lopez-Blazquez, Michael Ochieng' Otieno, Jesus Garcia-Foncillas, Javier Martinez-Useros","doi":"10.3390/antiox13111405","DOIUrl":null,"url":null,"abstract":"<p><p>Glutathione peroxidases (GPxs) are a family of enzymes that play a critical role in cellular redox homeostasis through the reduction of lipid hydroperoxides to alcohols, using glutathione as a substrate. Among them, GPx4 is particularly of interest in the regulation of ferroptosis, a form of iron-dependent programmed cell death driven by the accumulation of lipid peroxides in the endoplasmic reticulum, mitochondria, and plasma membrane. Ferroptosis has emerged as a crucial pathway in the context of cancer, particularly pancreatic cancer, which is notoriously resistant to conventional therapies. GPx4 acts as a key inhibitor of ferroptosis by detoxifying lipid peroxides, thereby preventing cell death. However, this protective mechanism also enables cancer cells to survive under oxidative stress, which makes GPx4 a potential druggable target in cancer therapy. The inhibition of GPx4 can trigger ferroptosis selectively in cancer cells, especially in those that rely heavily on this pathway for survival, such as pancreatic cancer cells. Consequently, targeting GPx4 and other GPX family members offers a promising therapeutic strategy to sensitize pancreatic cancer cells to ferroptosis, potentially overcoming resistance to current treatments and improving patient outcomes. Current research is focusing on the development of small-molecule inhibitors of GPx4 as potential candidates for pancreatic cancer treatment.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13111405","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glutathione peroxidases (GPxs) are a family of enzymes that play a critical role in cellular redox homeostasis through the reduction of lipid hydroperoxides to alcohols, using glutathione as a substrate. Among them, GPx4 is particularly of interest in the regulation of ferroptosis, a form of iron-dependent programmed cell death driven by the accumulation of lipid peroxides in the endoplasmic reticulum, mitochondria, and plasma membrane. Ferroptosis has emerged as a crucial pathway in the context of cancer, particularly pancreatic cancer, which is notoriously resistant to conventional therapies. GPx4 acts as a key inhibitor of ferroptosis by detoxifying lipid peroxides, thereby preventing cell death. However, this protective mechanism also enables cancer cells to survive under oxidative stress, which makes GPx4 a potential druggable target in cancer therapy. The inhibition of GPx4 can trigger ferroptosis selectively in cancer cells, especially in those that rely heavily on this pathway for survival, such as pancreatic cancer cells. Consequently, targeting GPx4 and other GPX family members offers a promising therapeutic strategy to sensitize pancreatic cancer cells to ferroptosis, potentially overcoming resistance to current treatments and improving patient outcomes. Current research is focusing on the development of small-molecule inhibitors of GPx4 as potential candidates for pancreatic cancer treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
谷胱甘肽过氧化物酶:胰腺癌治疗的一个新兴和有前途的治疗靶点。
谷胱甘肽过氧化物酶(GPxs)是一个酶家族,以谷胱甘肽为底物,通过将脂质过氧化物还原成醇,在细胞氧化还原平衡中发挥着关键作用。内质网、线粒体和质膜中脂质过氧化物的积累会导致一种铁依赖性程序性细胞死亡。铁跃迁已成为癌症,尤其是胰腺癌的一个重要途径,而胰腺癌对传统疗法的耐药性是众所周知的。GPx4 通过解毒脂质过氧化物来抑制铁氧化,从而防止细胞死亡。然而,这种保护机制也能使癌细胞在氧化压力下存活,这使得 GPx4 成为癌症治疗的潜在药物靶点。抑制 GPx4 可选择性地引发癌细胞的铁氧化,尤其是那些严重依赖这一途径生存的癌细胞,如胰腺癌细胞。因此,以 GPx4 和其他 GPX 家族成员为靶点提供了一种很有前景的治疗策略,可使胰腺癌细胞对铁蛋白沉积敏感,从而有可能克服对当前治疗的抗药性并改善患者的预后。目前的研究重点是开发 GPx4 的小分子抑制剂,作为胰腺癌治疗的潜在候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
25-Hydroxycholecalciferol Improves Cardiac Metabolic Adaption, Mitochondrial Biogenetics, and Redox Status to Ameliorate Pathological Remodeling and Functional Failure in Obese Chickens. Ole-Oxy, a Semi-Synthetic Analog of Oleuropein, Ameliorates Acute Skin and Colon Inflammation in Mice. (Photo)toxicity of Partially Oxidized Docosahexaenoate and Its Effect on the Formation of Lipofuscin in Cultured Human Retinal Pigment Epithelial Cells. Glutathione and Ascorbic Acid Accumulation in Mango Pulp Under Enhanced UV-B Based on Transcriptome. Hit Identification and Functional Validation of Novel Dual Inhibitors of HDAC8 and Tubulin Identified by Combining Docking and Molecular Dynamics Simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1