Influence of the Degree of Unsaturation in Fish Oil Supplements on Oxidative Stress and Protein Carbonylation in the Cerebral Cortex and Cerebellum of Healthy Rats.
Francisco Moreno, Lucía Méndez, Ingrid Fernández, Bernat Miralles-Pérez, Montserrat Giralt, Marta Romeu, Sara Ramos-Romero, Josep Lluís Torres, Isabel Medina
{"title":"Influence of the Degree of Unsaturation in Fish Oil Supplements on Oxidative Stress and Protein Carbonylation in the Cerebral Cortex and Cerebellum of Healthy Rats.","authors":"Francisco Moreno, Lucía Méndez, Ingrid Fernández, Bernat Miralles-Pérez, Montserrat Giralt, Marta Romeu, Sara Ramos-Romero, Josep Lluís Torres, Isabel Medina","doi":"10.3390/antiox13111408","DOIUrl":null,"url":null,"abstract":"<p><p>ω-3 polyunsaturated fatty acids (PUFAs) are crucial for brain structure and function, especially docosahexaenoic acid (DHA). However, an excess of DHA may increase lipid peroxidation due to its high degree of unsaturation, particularly in tissues highly susceptible to oxidative stress, such as the brain. Therefore, this study evaluated the effects of 10 weeks of dietary supplementation with fish oil containing 80% DHA on oxidative stress and the modulation of the carbonylated proteome in both the cerebral cortex and cerebellum of male Sprague Dawley rats. The results were compared with those induced by oils with a lower degree of fat unsaturation (fish oil containing 25% DHA and 25% eicosapentaenoic acid, soybean oil containing 50% linoleic acid and coconut oil containing 90% saturated fat). The results demonstrated that fish oil containing 80% DHA significantly increased the ω3/ω6 ratio in both the cortex and cerebellum while stimulating antioxidant defense by enhancing the reduced glutathione amount and decreasing the carbonylation of specific proteins, mainly those involved in glycolysis and neurotransmission. The majority of sensitive proteins in both brain regions followed this carbonylation trend (in decreasing order): soybean > EPA/DHA 1:1 > coconut > 80% DHA. The results also indicated that the cerebellum is more responsive than the cortex to changes in the cellular redox environment induced by varying degrees of fat unsaturation. In conclusion, under healthy conditions, dietary supplementation with fish oils containing high DHA levels makes the brain more resilient to potential oxidative insults compared to oils with lower DHA content and a lower degree of fatty acid unsaturation.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591239/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13111408","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ω-3 polyunsaturated fatty acids (PUFAs) are crucial for brain structure and function, especially docosahexaenoic acid (DHA). However, an excess of DHA may increase lipid peroxidation due to its high degree of unsaturation, particularly in tissues highly susceptible to oxidative stress, such as the brain. Therefore, this study evaluated the effects of 10 weeks of dietary supplementation with fish oil containing 80% DHA on oxidative stress and the modulation of the carbonylated proteome in both the cerebral cortex and cerebellum of male Sprague Dawley rats. The results were compared with those induced by oils with a lower degree of fat unsaturation (fish oil containing 25% DHA and 25% eicosapentaenoic acid, soybean oil containing 50% linoleic acid and coconut oil containing 90% saturated fat). The results demonstrated that fish oil containing 80% DHA significantly increased the ω3/ω6 ratio in both the cortex and cerebellum while stimulating antioxidant defense by enhancing the reduced glutathione amount and decreasing the carbonylation of specific proteins, mainly those involved in glycolysis and neurotransmission. The majority of sensitive proteins in both brain regions followed this carbonylation trend (in decreasing order): soybean > EPA/DHA 1:1 > coconut > 80% DHA. The results also indicated that the cerebellum is more responsive than the cortex to changes in the cellular redox environment induced by varying degrees of fat unsaturation. In conclusion, under healthy conditions, dietary supplementation with fish oils containing high DHA levels makes the brain more resilient to potential oxidative insults compared to oils with lower DHA content and a lower degree of fatty acid unsaturation.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.