Low-Dose Melittin Enhanced Pigment Production Through the Upregulation of Tyrosinase Activity and Dendricity in Melanocytes by Limiting Oxidative Stress: A Therapeutic Implication for Vitiligo.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants Pub Date : 2024-11-20 DOI:10.3390/antiox13111424
Manoj Kumar Tembhre, Shipra
{"title":"Low-Dose Melittin Enhanced Pigment Production Through the Upregulation of Tyrosinase Activity and Dendricity in Melanocytes by Limiting Oxidative Stress: A Therapeutic Implication for Vitiligo.","authors":"Manoj Kumar Tembhre, Shipra","doi":"10.3390/antiox13111424","DOIUrl":null,"url":null,"abstract":"<p><p>Melittin is a major active ingredient of the bee venom produced by honeybees (<i>Apis mellifera</i>) that exerts various biological effects, such as anti-inflammatory, anti-tumor, anti-microbial, and antioxidant. The role of melittin in modulating melanin production by melanocytes is not known. Therefore, the present study aimed to study the effect of melittin on melanin production by human melanocytes along with its antioxidant status. Cultured human melanocytes were treated with melittin in a dose- and time-dependent manner, followed by the study of the cell viability, cell proliferation, and total melanin content. The effects of melittin in combination with narrow-band ultraviolet B (NB-UVB) on the total melanin content, melanocyte dendricity, oxidative stress, and the expression of genes associated with melanogenesis were investigated. An increased melanin content was observed with a low dose of melittin (LDM) (alone or in combination with NB-UVB), and there was a corresponding increase in the tyrosinase activity, melanocyte dendricity, and melanogenesis-associated genes. The present study concluded that LDM alone or LDM (+NB-UVB) can induce melanin synthesis by increasing the tyrosinase activity in melanocytes by limiting the oxidative stress, and this may be therapeutically exploited as an adjuvant therapy for vitiligo.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590868/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13111424","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Melittin is a major active ingredient of the bee venom produced by honeybees (Apis mellifera) that exerts various biological effects, such as anti-inflammatory, anti-tumor, anti-microbial, and antioxidant. The role of melittin in modulating melanin production by melanocytes is not known. Therefore, the present study aimed to study the effect of melittin on melanin production by human melanocytes along with its antioxidant status. Cultured human melanocytes were treated with melittin in a dose- and time-dependent manner, followed by the study of the cell viability, cell proliferation, and total melanin content. The effects of melittin in combination with narrow-band ultraviolet B (NB-UVB) on the total melanin content, melanocyte dendricity, oxidative stress, and the expression of genes associated with melanogenesis were investigated. An increased melanin content was observed with a low dose of melittin (LDM) (alone or in combination with NB-UVB), and there was a corresponding increase in the tyrosinase activity, melanocyte dendricity, and melanogenesis-associated genes. The present study concluded that LDM alone or LDM (+NB-UVB) can induce melanin synthesis by increasing the tyrosinase activity in melanocytes by limiting the oxidative stress, and this may be therapeutically exploited as an adjuvant therapy for vitiligo.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低剂量美利汀通过限制氧化应激上调黑色素细胞中酪氨酸酶的活性和树突性来促进色素生成:对白癜风的治疗意义。
蜜露素是蜜蜂(Apis mellifera)分泌的蜂毒中的一种主要活性成分,具有多种生物效应,如消炎、抗肿瘤、抗微生物和抗氧化。美乐亭在调节黑色素细胞产生黑色素方面的作用尚不清楚。因此,本研究旨在研究美乐汀对人类黑色素细胞产生黑色素的影响及其抗氧化作用。研究人员以剂量和时间依赖的方式对培养的人类黑色素细胞进行了处理,随后研究了细胞活力、细胞增殖和黑色素总含量。研究还探讨了美蓝素与窄带紫外线 B(NB-UVB)联合使用对黑色素总含量、黑色素细胞树突性、氧化应激和黑色素生成相关基因表达的影响。低剂量美蓝素(LDM)(单独使用或与 NB-UVB 联用)可增加黑色素含量,酪氨酸酶活性、黑色素细胞树突性和黑色素生成相关基因也相应增加。本研究认为,单独使用LDM或LDM(+NB-UVB)可通过限制氧化应激,提高黑色素细胞中酪氨酸酶的活性,从而诱导黑色素的合成,可作为白癜风的辅助疗法加以治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
25-Hydroxycholecalciferol Improves Cardiac Metabolic Adaption, Mitochondrial Biogenetics, and Redox Status to Ameliorate Pathological Remodeling and Functional Failure in Obese Chickens. Ole-Oxy, a Semi-Synthetic Analog of Oleuropein, Ameliorates Acute Skin and Colon Inflammation in Mice. (Photo)toxicity of Partially Oxidized Docosahexaenoate and Its Effect on the Formation of Lipofuscin in Cultured Human Retinal Pigment Epithelial Cells. Glutathione and Ascorbic Acid Accumulation in Mango Pulp Under Enhanced UV-B Based on Transcriptome. Hit Identification and Functional Validation of Novel Dual Inhibitors of HDAC8 and Tubulin Identified by Combining Docking and Molecular Dynamics Simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1