Yeong-Jae Jeon, Kyung Min Nam, Shin-Eui Park, Hyeon-Man Baek
{"title":"Improving Brain Metabolite Detection with a Combined Low-Rank Approximation and Denoising Diffusion Probabilistic Model Approach.","authors":"Yeong-Jae Jeon, Kyung Min Nam, Shin-Eui Park, Hyeon-Man Baek","doi":"10.3390/bioengineering11111170","DOIUrl":null,"url":null,"abstract":"<p><p>In vivo proton magnetic resonance spectroscopy (MRS) is a noninvasive technique for monitoring brain metabolites. However, it is challenged by a low signal-to-noise ratio (SNR), often necessitating extended scan times to compensate. One of the conventional techniques for noise reduction is signal averaging, which is inherently time-consuming and can lead to participant discomfort, thus posing limitations in clinical settings. This study aimed to develop a hybrid denoising strategy that integrates low-rank approximation and denoising diffusion probabilistic model (DDPM) to enhance MRS data quality and shorten scan times. Using publicly available <sup>1</sup>H MRS datasets from 15 subjects, we applied the Casorati SVD and DDPM to obtain baseline and functional data during a pain stimulation task. This method significantly improved SNR, resulting in outcomes comparable to or better than averaging over 32 signals. It also provided the most consistent metabolite measurements and adequately tracked temporal changes in glutamate levels, correlating with pain intensity ratings after heating. These findings demonstrate that our approach enhances MRS data quality, offering a more efficient alternative to conventional methods and expanding the potential for the real-time monitoring of neurochemical changes. This contribution has the potential to advance MRS techniques by integrating advanced denoising methods to increase the acquisition speed and enhance the precision of brain metabolite analyses.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592133/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11111170","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In vivo proton magnetic resonance spectroscopy (MRS) is a noninvasive technique for monitoring brain metabolites. However, it is challenged by a low signal-to-noise ratio (SNR), often necessitating extended scan times to compensate. One of the conventional techniques for noise reduction is signal averaging, which is inherently time-consuming and can lead to participant discomfort, thus posing limitations in clinical settings. This study aimed to develop a hybrid denoising strategy that integrates low-rank approximation and denoising diffusion probabilistic model (DDPM) to enhance MRS data quality and shorten scan times. Using publicly available 1H MRS datasets from 15 subjects, we applied the Casorati SVD and DDPM to obtain baseline and functional data during a pain stimulation task. This method significantly improved SNR, resulting in outcomes comparable to or better than averaging over 32 signals. It also provided the most consistent metabolite measurements and adequately tracked temporal changes in glutamate levels, correlating with pain intensity ratings after heating. These findings demonstrate that our approach enhances MRS data quality, offering a more efficient alternative to conventional methods and expanding the potential for the real-time monitoring of neurochemical changes. This contribution has the potential to advance MRS techniques by integrating advanced denoising methods to increase the acquisition speed and enhance the precision of brain metabolite analyses.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering