Reduced Levels of miR-145-3p Drive Cell Cycle Progression in Advanced High-Grade Serous Ovarian Cancer.

IF 5.1 2区 生物学 Q2 CELL BIOLOGY Cells Pub Date : 2024-11-18 DOI:10.3390/cells13221904
Eva González-Cantó, Mariana Monteiro, Cristina Aghababyan, Ana Ferrero-Micó, Sergio Navarro-Serna, Maravillas Mellado-López, Sarai Tomás-Pérez, Juan Sandoval, Antoni Llueca, Alejandro Herreros-Pomares, Juan Gilabert-Estellés, Vicente Pérez-García, Josep Marí-Alexandre
{"title":"Reduced Levels of miR-145-3p Drive Cell Cycle Progression in Advanced High-Grade Serous Ovarian Cancer.","authors":"Eva González-Cantó, Mariana Monteiro, Cristina Aghababyan, Ana Ferrero-Micó, Sergio Navarro-Serna, Maravillas Mellado-López, Sarai Tomás-Pérez, Juan Sandoval, Antoni Llueca, Alejandro Herreros-Pomares, Juan Gilabert-Estellés, Vicente Pérez-García, Josep Marí-Alexandre","doi":"10.3390/cells13221904","DOIUrl":null,"url":null,"abstract":"<p><p>High-grade serous ovarian cancer (HGSOC) is the most lethal form of gynecologic cancer, with limited treatment options and a poor prognosis. Epigenetic factors, such as microRNAs (miRNAs) and DNA methylation, play pivotal roles in cancer progression, yet their specific contributions to HGSOC remain insufficiently understood. In this study, we performed comprehensive high-throughput analyses to identify dysregulated miRNAs in HGSOC and investigate their epigenetic regulation. Analysis of tissue samples from advanced-stage HGSOC patients revealed 20 differentially expressed miRNAs, 11 of which were corroborated via RT-qPCR in patient samples and cancer cell lines. Among these, miR-145-3p was consistently downregulated post-neoadjuvant therapy and was able to distinguish tumoural from control tissues. Further investigation confirmed that DNA methylation controls <i>MIR145</i> expression. Functional assays showed that overexpression of miR-145-3p significantly reduced cell migration and induced G0/G1 cell cycle arrest by modulating the cyclin D1-CDK4/6 pathway. These findings suggest that miR-145-3p downregulation enhances cell proliferation and motility in HGSOC, implicating its restoration as a potential therapeutic target focused on G1/S phase regulation in the treatment of HGSOC.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 22","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells13221904","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High-grade serous ovarian cancer (HGSOC) is the most lethal form of gynecologic cancer, with limited treatment options and a poor prognosis. Epigenetic factors, such as microRNAs (miRNAs) and DNA methylation, play pivotal roles in cancer progression, yet their specific contributions to HGSOC remain insufficiently understood. In this study, we performed comprehensive high-throughput analyses to identify dysregulated miRNAs in HGSOC and investigate their epigenetic regulation. Analysis of tissue samples from advanced-stage HGSOC patients revealed 20 differentially expressed miRNAs, 11 of which were corroborated via RT-qPCR in patient samples and cancer cell lines. Among these, miR-145-3p was consistently downregulated post-neoadjuvant therapy and was able to distinguish tumoural from control tissues. Further investigation confirmed that DNA methylation controls MIR145 expression. Functional assays showed that overexpression of miR-145-3p significantly reduced cell migration and induced G0/G1 cell cycle arrest by modulating the cyclin D1-CDK4/6 pathway. These findings suggest that miR-145-3p downregulation enhances cell proliferation and motility in HGSOC, implicating its restoration as a potential therapeutic target focused on G1/S phase regulation in the treatment of HGSOC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miR-145-3p水平的降低推动晚期高分化浆液性卵巢癌的细胞周期进展
高分化浆液性卵巢癌(HGSOC)是最致命的妇科癌症,治疗方案有限,预后较差。表观遗传因子,如微小RNA(miRNA)和DNA甲基化,在癌症进展中起着关键作用,但它们对HGSOC的具体贡献仍未得到充分了解。在这项研究中,我们进行了全面的高通量分析,以确定 HGSOC 中失调的 miRNAs,并研究它们的表观遗传调控。对晚期 HGSOC 患者组织样本的分析发现了 20 个表达不同的 miRNA,其中 11 个通过 RT-qPCR 在患者样本和癌细胞系中得到证实。其中,miR-145-3p 在新辅助治疗后持续下调,并能区分肿瘤组织和对照组织。进一步的研究证实,DNA 甲基化控制着 MIR145 的表达。功能测试显示,过表达 miR-145-3p 能显著降低细胞迁移,并通过调节细胞周期蛋白 D1-CDK4/6 通路诱导 G0/G1 细胞周期停滞。这些研究结果表明,miR-145-3p 的下调会增强 HGSOC 中细胞的增殖和运动能力,这意味着将其恢复为治疗 HGSOC 的潜在治疗靶点,重点是 G1/S 期调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
Distinct Molecular Profiles Underpin Mild-To-Moderate Equine Asthma Cytological Profiles. Emerging Role of Extracellular pH in Tumor Microenvironment as a Therapeutic Target for Cancer Immunotherapy. BCL2i-Based Therapies and Emerging Resistance in Chronic Lymphocytic Leukemia. Calcium Homeostasis Is Involved in the Modulation of Gene Expression by MSL2 in Imbalanced Genomes. Cell Cycle Dynamics in the Microalga Tisochrysis lutea: Influence of Light Duration and Drugs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1