AtLEC2-Mediated Enhancement of Endoplasmic Reticulum-Targeted Foreign Protein Synthesis in Nicotiana benthamiana Leaves: Insights From Transcriptomic Analysis.
Carolina G Ocampo, Florencia Vignolles, Marina A Pombo, Maria Laura Colombo, Hernan G Rosli, Silvana Petruccelli
{"title":"AtLEC2-Mediated Enhancement of Endoplasmic Reticulum-Targeted Foreign Protein Synthesis in Nicotiana benthamiana Leaves: Insights From Transcriptomic Analysis.","authors":"Carolina G Ocampo, Florencia Vignolles, Marina A Pombo, Maria Laura Colombo, Hernan G Rosli, Silvana Petruccelli","doi":"10.1002/bit.28893","DOIUrl":null,"url":null,"abstract":"<p><p>Many proteins used in industrial and pharmaceutical applications are typically synthesized within the secretory pathway. While yeast and mammalian cells have been engineered to enhance the production of endomembrane-targeted proteins, similar strategies in plant cells remain underexplored. This study investigates the potential of arabidopsis leafy cotyledon 2 (AtLEC2), a key regulator of seed development, to enhance the production of proteins targeted to the endoplasmic reticulum (ER) in Nicotiana benthamiana leaves. Through transient expression experiments, we demonstrate that AtLEC2 selectively increases the production of ER-targeted GUS without affecting its cytosolic variant. Moreover, leaves agroinfiltrated with AtLEC2 show a significant increase in ER-GFP accumulation compared to controls lacking AtLEC2. Transcriptomic analysis reveals that AtLEC2 promotes ribosome and chloroplast biogenesis, along with the upregulation of genes involved in photosynthesis, translation, and membrane synthesis. Notably, seed-specific poly(A) binding proteins involved in RNA stability and translation initiation, as well as 3-hydroxy-3-methylglutaryl coenzyme A reductase-linked to ER hypertrophy-are highly upregulated. This study establishes a novel connection between AtLEC2 and the enhancement of ER-targeted foreign protein synthesis, paving the way for innovative strategies in plant cellular engineering.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28893","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many proteins used in industrial and pharmaceutical applications are typically synthesized within the secretory pathway. While yeast and mammalian cells have been engineered to enhance the production of endomembrane-targeted proteins, similar strategies in plant cells remain underexplored. This study investigates the potential of arabidopsis leafy cotyledon 2 (AtLEC2), a key regulator of seed development, to enhance the production of proteins targeted to the endoplasmic reticulum (ER) in Nicotiana benthamiana leaves. Through transient expression experiments, we demonstrate that AtLEC2 selectively increases the production of ER-targeted GUS without affecting its cytosolic variant. Moreover, leaves agroinfiltrated with AtLEC2 show a significant increase in ER-GFP accumulation compared to controls lacking AtLEC2. Transcriptomic analysis reveals that AtLEC2 promotes ribosome and chloroplast biogenesis, along with the upregulation of genes involved in photosynthesis, translation, and membrane synthesis. Notably, seed-specific poly(A) binding proteins involved in RNA stability and translation initiation, as well as 3-hydroxy-3-methylglutaryl coenzyme A reductase-linked to ER hypertrophy-are highly upregulated. This study establishes a novel connection between AtLEC2 and the enhancement of ER-targeted foreign protein synthesis, paving the way for innovative strategies in plant cellular engineering.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.