{"title":"LUCAT1-Mediated Competing Endogenous RNA (ceRNA) Network in Triple-Negative Breast Cancer.","authors":"Deepak Verma, Sumit Siddharth, Ashutosh S Yende, Qitong Wu, Dipali Sharma","doi":"10.3390/cells13221918","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is a heterogeneous disease comprising multiple molecularly distinct subtypes with varied prevalence, prognostics, and treatment strategies. Among them, triple-negative breast cancer, though the least prevalent, is the most aggressive subtype, with limited therapeutic options. Recent emergence of competing endogenous RNA (ceRNA) networks has highlighted how long noncoding RNAs (lncRNAs), microRNAs (miRs), and mRNA orchestrate a complex interplay meticulously modulating mRNA functionality. Focusing on TNBC, this study aimed to construct a ceRNA network using differentially expressed lncRNAs, miRs, and mRNAs. We queried the differentially expressed lncRNAs (DElncRNAs) between TNBC and luminal samples and found 389 upregulated and 386 downregulated lncRNAs, including novel transcripts in TNBC. DElncRNAs were further evaluated for their clinical, functional, and mechanistic relevance to TNBCs using the lnc2cancer 3.0 database, which presented LUCAT1 (lung cancer-associated transcript 1) as a putative node. Next, the ceRNA network (lncRNA-miRNA-mRNA) of LUCAT1 was established. Several miRNA-mRNA connections of LUCAT1 implicated in regulating stemness (LUCAT1-miR-375-Yap1, LUCAT1-miR181-5p-Wnt, LUCAT1-miR-199a-5p-ZEB1), apoptosis (LUCAT1-miR-181c-5p-Bcl2), drug efflux (LUCAT1-miR-200c-ABCB1, LRP1, MRP5, MDR1), and sheddase activities (LUCAT1-miR-493-5p-ADAM10) were identified, indicating an intricate regulatory mechanism of LUCAT1 in TNBC. Indeed, LUCAT1 silencing led to mitigated cell growth, migration, and stem-like features in TNBC. This work sheds light on the LUCAT1 ceRNA network in TNBC and implies its involvement in TNBC growth and progression.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 22","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593075/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells13221918","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is a heterogeneous disease comprising multiple molecularly distinct subtypes with varied prevalence, prognostics, and treatment strategies. Among them, triple-negative breast cancer, though the least prevalent, is the most aggressive subtype, with limited therapeutic options. Recent emergence of competing endogenous RNA (ceRNA) networks has highlighted how long noncoding RNAs (lncRNAs), microRNAs (miRs), and mRNA orchestrate a complex interplay meticulously modulating mRNA functionality. Focusing on TNBC, this study aimed to construct a ceRNA network using differentially expressed lncRNAs, miRs, and mRNAs. We queried the differentially expressed lncRNAs (DElncRNAs) between TNBC and luminal samples and found 389 upregulated and 386 downregulated lncRNAs, including novel transcripts in TNBC. DElncRNAs were further evaluated for their clinical, functional, and mechanistic relevance to TNBCs using the lnc2cancer 3.0 database, which presented LUCAT1 (lung cancer-associated transcript 1) as a putative node. Next, the ceRNA network (lncRNA-miRNA-mRNA) of LUCAT1 was established. Several miRNA-mRNA connections of LUCAT1 implicated in regulating stemness (LUCAT1-miR-375-Yap1, LUCAT1-miR181-5p-Wnt, LUCAT1-miR-199a-5p-ZEB1), apoptosis (LUCAT1-miR-181c-5p-Bcl2), drug efflux (LUCAT1-miR-200c-ABCB1, LRP1, MRP5, MDR1), and sheddase activities (LUCAT1-miR-493-5p-ADAM10) were identified, indicating an intricate regulatory mechanism of LUCAT1 in TNBC. Indeed, LUCAT1 silencing led to mitigated cell growth, migration, and stem-like features in TNBC. This work sheds light on the LUCAT1 ceRNA network in TNBC and implies its involvement in TNBC growth and progression.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.