Engineered macrophages: an "Intelligent Repair" cellular machine for heart injury.

IF 4 Q2 CELL & TISSUE ENGINEERING Cell Regeneration Pub Date : 2024-11-27 DOI:10.1186/s13619-024-00209-7
Zhuo Zhang, Hetian Du, Weijie Gao, Donghui Zhang
{"title":"Engineered macrophages: an \"Intelligent Repair\" cellular machine for heart injury.","authors":"Zhuo Zhang, Hetian Du, Weijie Gao, Donghui Zhang","doi":"10.1186/s13619-024-00209-7","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are crucial in the heart's development, function, and injury. As part of the innate immune system, they act as the first line of defense during cardiac injury and repair. After events such as myocardial infarction or myocarditis, numerous macrophages are recruited to the affected areas of the heart to clear dead cells and facilitate tissue repair. This review summarizes the roles of resident and recruited macrophages in developing cardiovascular diseases. We also describe how macrophage phenotypes dynamically change within the cardiovascular disease microenvironment, exhibiting distinct pro-inflammatory and anti-inflammatory functions. Recent studies reveal the values of targeting macrophages in cardiovascular diseases treatment and the novel bioengineering technologies facilitate engineered macrophages as a promising therapeutic strategy. Engineered macrophages have strong natural tropism and infiltration for cardiovascular diseases aiming to reduce inflammatory response, inhibit excessive fibrosis, restore heart function and promote heart regeneration. We also discuss recent studies highlighting therapeutic strategies and new approaches targeting engineered macrophages, which can aid in heart injury recovery.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"25"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599506/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-024-00209-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Macrophages are crucial in the heart's development, function, and injury. As part of the innate immune system, they act as the first line of defense during cardiac injury and repair. After events such as myocardial infarction or myocarditis, numerous macrophages are recruited to the affected areas of the heart to clear dead cells and facilitate tissue repair. This review summarizes the roles of resident and recruited macrophages in developing cardiovascular diseases. We also describe how macrophage phenotypes dynamically change within the cardiovascular disease microenvironment, exhibiting distinct pro-inflammatory and anti-inflammatory functions. Recent studies reveal the values of targeting macrophages in cardiovascular diseases treatment and the novel bioengineering technologies facilitate engineered macrophages as a promising therapeutic strategy. Engineered macrophages have strong natural tropism and infiltration for cardiovascular diseases aiming to reduce inflammatory response, inhibit excessive fibrosis, restore heart function and promote heart regeneration. We also discuss recent studies highlighting therapeutic strategies and new approaches targeting engineered macrophages, which can aid in heart injury recovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工程巨噬细胞:治疗心脏损伤的 "智能修复 "细胞机器。
巨噬细胞对心脏的发育、功能和损伤至关重要。作为先天性免疫系统的一部分,巨噬细胞是心脏损伤和修复过程中的第一道防线。心肌梗塞或心肌炎等事件发生后,大量巨噬细胞被招募到心脏受影响区域,清除死亡细胞并促进组织修复。本综述总结了常驻和招募的巨噬细胞在心血管疾病发生中的作用。我们还描述了巨噬细胞表型如何在心血管疾病微环境中发生动态变化,表现出不同的促炎和抗炎功能。最近的研究揭示了以巨噬细胞为靶点治疗心血管疾病的价值,而新型生物工程技术促进了工程巨噬细胞成为一种前景广阔的治疗策略。工程巨噬细胞对心血管疾病有很强的天然趋向性和浸润性,旨在减轻炎症反应、抑制过度纤维化、恢复心脏功能和促进心脏再生。我们还讨论了最近的一些研究,这些研究强调了针对工程巨噬细胞的治疗策略和新方法,它们有助于心脏损伤的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Regeneration
Cell Regeneration Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics: ◎ Embryonic stem cells ◎ Induced pluripotent stem cells ◎ Tissue-specific stem cells ◎ Tissue or organ regeneration ◎ Methodology ◎ Biomaterials and regeneration ◎ Clinical translation or application in medicine
期刊最新文献
Saponins enhance the stability and cost-efficiency of human embryonic stem cell culture. Standard: Human gastric organoids. Neuroligin-3 R451C induces gain-of-function gene expression in astroglia in an astroglia-enriched brain organoid model. Standard: Human gastric cancer organoids. Physical modulation and peripheral nerve regeneration: a literature review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1