Kirk Patrick Carreon Catral, Choi-Yee Tse, Wei-Ying Yang, Choi-Ying Ling, Oi-Lam Kwok, Kit-Ying Choy, Da-Qian Lu, Jing-Fang Bian, Thomas Chuen Lam, Dennis Yan-Yin Tse, Samantha Sze-Wan Shan
{"title":"Thrombospondin 1 Mediates Autophagy Upon Inhibition of the Rho-Associated Protein Kinase Inhibitor.","authors":"Kirk Patrick Carreon Catral, Choi-Yee Tse, Wei-Ying Yang, Choi-Ying Ling, Oi-Lam Kwok, Kit-Ying Choy, Da-Qian Lu, Jing-Fang Bian, Thomas Chuen Lam, Dennis Yan-Yin Tse, Samantha Sze-Wan Shan","doi":"10.3390/cells13221907","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related macular degeneration (AMD) is a degenerative eye disease leading to central vision loss and is characterized by dysregulated autophagy of the retinal pigment epithelium (RPE) layer. Recent studies have suggested that rho-associated protein kinase (ROCK) inhibitors may enhance autophagy in neurodegenerative diseases and promote the survival of RPE cells. This study investigated the effect of ROCK inhibitors on autophagy gene expression and autophagic vacuole formation in a human RPE (ARPE-19) cell line. The highly selective and potent ROCK inhibitor Y-39983 enhanced the expression of autophagy genes in ARPE-19 cells and increased autophagic vacuole formation. A proteomic analysis using mass spectrometry was performed to further characterize the effects of ROCK inhibition at the protein level. Y-39983 downregulated thrombospondin-1 (THBS1), and suppression of THBS1 in ARPE-19 cells resulted in an increase in autophagic vacuole formation. Our data showed that ROCK inhibitor-induced autophagy was mediated by THBS1 downregulation. We identified ROCK and THBS1 as potential novel therapeutic targets in AMD.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 22","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells13221907","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Age-related macular degeneration (AMD) is a degenerative eye disease leading to central vision loss and is characterized by dysregulated autophagy of the retinal pigment epithelium (RPE) layer. Recent studies have suggested that rho-associated protein kinase (ROCK) inhibitors may enhance autophagy in neurodegenerative diseases and promote the survival of RPE cells. This study investigated the effect of ROCK inhibitors on autophagy gene expression and autophagic vacuole formation in a human RPE (ARPE-19) cell line. The highly selective and potent ROCK inhibitor Y-39983 enhanced the expression of autophagy genes in ARPE-19 cells and increased autophagic vacuole formation. A proteomic analysis using mass spectrometry was performed to further characterize the effects of ROCK inhibition at the protein level. Y-39983 downregulated thrombospondin-1 (THBS1), and suppression of THBS1 in ARPE-19 cells resulted in an increase in autophagic vacuole formation. Our data showed that ROCK inhibitor-induced autophagy was mediated by THBS1 downregulation. We identified ROCK and THBS1 as potential novel therapeutic targets in AMD.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.