Quantum Stream Cipher Based on Holevo-Yuen Theory: Part II.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-11-15 DOI:10.3390/e26110983
Osamu Hirota, Masaki Sohma
{"title":"Quantum Stream Cipher Based on Holevo-Yuen Theory: Part II.","authors":"Osamu Hirota, Masaki Sohma","doi":"10.3390/e26110983","DOIUrl":null,"url":null,"abstract":"<p><p>This paper discusses the foundation of security theory for the Quantum stream cipher based on the Holevo-Yuen theory, which allows the use of \"optical amplifiers\". This type of cipher is a technology that provides information-theoretic security (ITS) to optical data transmission by randomizing ultrafast optical communication signals with quantum noise. In general, the quantitative security of ITS is evaluated in terms of the unicity distance in Shannon theory. However, the quantum version requires modeling beyond the Shannon model of a random cipher to utilize the characteristics of the physical layer. Therefore, as the first step, one has to develop a generalized unicity distance theory and apply it to the evaluation of security. Although a complete theoretical formulation has not yet been established, this paper explains a primitive structure of a generalization of the Shannon random cipher and shows that the realization of this is the generalized quantum stream cipher. In addition, we present several implementation methods of generalized quantum stream ciphers and their security.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593138/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110983","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses the foundation of security theory for the Quantum stream cipher based on the Holevo-Yuen theory, which allows the use of "optical amplifiers". This type of cipher is a technology that provides information-theoretic security (ITS) to optical data transmission by randomizing ultrafast optical communication signals with quantum noise. In general, the quantitative security of ITS is evaluated in terms of the unicity distance in Shannon theory. However, the quantum version requires modeling beyond the Shannon model of a random cipher to utilize the characteristics of the physical layer. Therefore, as the first step, one has to develop a generalized unicity distance theory and apply it to the evaluation of security. Although a complete theoretical formulation has not yet been established, this paper explains a primitive structure of a generalization of the Shannon random cipher and shows that the realization of this is the generalized quantum stream cipher. In addition, we present several implementation methods of generalized quantum stream ciphers and their security.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 Holevo-Yuen 理论的量子流密码:第二部分.
本文讨论了基于霍勒沃-袁理论的量子流密码的安全理论基础,该理论允许使用 "光放大器"。这种密码是一种通过量子噪声随机化超快光通信信号,为光数据传输提供信息论安全性(ITS)的技术。一般来说,ITS 的定量安全性是根据香农理论中的单一性距离来评估的。然而,量子版本的建模需要超越随机密码的香农模型,以利用物理层的特性。因此,作为第一步,我们必须建立一个广义的单一性距离理论,并将其应用于安全性评估。虽然完整的理论表述尚未建立,但本文解释了香农随机密码广义化的一个基本结构,并说明其实现方式就是广义量子流密码。此外,我们还介绍了几种广义量子流密码的实现方法及其安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Inferring About the Average Value of Audit Errors from Sequential Ratio Tests. How Do Transformers Model Physics? Investigating the Simple Harmonic Oscillator. "In Mathematical Language": On Mathematical Foundations of Quantum Foundations. Derangetropy in Probability Distributions and Information Dynamics. Generalized Filter Bank Orthogonal Frequency Division Multiplexing: Low-Complexity Waveform for Ultra-Wide Bandwidth and Flexible Services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1