Identifying Key Nodes for the Influence Spread Using a Machine Learning Approach.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-11-06 DOI:10.3390/e26110955
Mateusz Stolarski, Adam Piróg, Piotr Bródka
{"title":"Identifying Key Nodes for the Influence Spread Using a Machine Learning Approach.","authors":"Mateusz Stolarski, Adam Piróg, Piotr Bródka","doi":"10.3390/e26110955","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of key nodes in complex networks is an important topic in many network science areas. It is vital to a variety of real-world applications, including viral marketing, epidemic spreading and influence maximization. In recent years, machine learning algorithms have proven to outperform the conventional, centrality-based methods in accuracy and consistency, but this approach still requires further refinement. What information about the influencers can be extracted from the network? How can we precisely obtain the labels required for training? Can these models generalize well? In this paper, we answer these questions by presenting an enhanced machine learning-based framework for the influence spread problem. We focus on identifying key nodes for the Independent Cascade model, which is a popular reference method. Our main contribution is an improved process of obtaining the labels required for training by introducing \"Smart Bins\" and proving their advantage over known methods. Next, we show that our methodology allows ML models to not only predict the influence of a given node, but to also determine other characteristics of the spreading process-which is another novelty to the relevant literature. Finally, we extensively test our framework and its ability to generalize beyond complex networks of different types and sizes, gaining important insight into the properties of these methods.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592689/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110955","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of key nodes in complex networks is an important topic in many network science areas. It is vital to a variety of real-world applications, including viral marketing, epidemic spreading and influence maximization. In recent years, machine learning algorithms have proven to outperform the conventional, centrality-based methods in accuracy and consistency, but this approach still requires further refinement. What information about the influencers can be extracted from the network? How can we precisely obtain the labels required for training? Can these models generalize well? In this paper, we answer these questions by presenting an enhanced machine learning-based framework for the influence spread problem. We focus on identifying key nodes for the Independent Cascade model, which is a popular reference method. Our main contribution is an improved process of obtaining the labels required for training by introducing "Smart Bins" and proving their advantage over known methods. Next, we show that our methodology allows ML models to not only predict the influence of a given node, but to also determine other characteristics of the spreading process-which is another novelty to the relevant literature. Finally, we extensively test our framework and its ability to generalize beyond complex networks of different types and sizes, gaining important insight into the properties of these methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习方法识别影响传播的关键节点
复杂网络中关键节点的识别是许多网络科学领域的重要课题。它对病毒营销、流行病传播和影响力最大化等各种现实应用至关重要。近年来,事实证明机器学习算法在准确性和一致性方面优于传统的基于中心性的方法,但这种方法仍需进一步完善。可以从网络中提取哪些关于影响者的信息?如何精确获取训练所需的标签?这些模型能否很好地泛化?在本文中,我们针对影响力传播问题提出了一个基于机器学习的增强型框架,从而回答了这些问题。我们的重点是识别独立级联模型的关键节点,这是一种流行的参考方法。我们的主要贡献在于通过引入 "智能箱 "改进了获取训练所需标签的过程,并证明了其相对于已知方法的优势。接下来,我们展示了我们的方法允许 ML 模型不仅预测给定节点的影响,还能确定传播过程的其他特征--这是相关文献的另一个新颖之处。最后,我们广泛测试了我们的框架及其在不同类型和规模的复杂网络中的推广能力,从而对这些方法的特性有了重要的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Inferring About the Average Value of Audit Errors from Sequential Ratio Tests. How Do Transformers Model Physics? Investigating the Simple Harmonic Oscillator. "In Mathematical Language": On Mathematical Foundations of Quantum Foundations. Derangetropy in Probability Distributions and Information Dynamics. Generalized Filter Bank Orthogonal Frequency Division Multiplexing: Low-Complexity Waveform for Ultra-Wide Bandwidth and Flexible Services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1