Sensitivity of Bayesian Networks to Noise in Their Parameters.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-11-09 DOI:10.3390/e26110963
Agnieszka Onisko, Marek J Druzdzel
{"title":"Sensitivity of Bayesian Networks to Noise in Their Parameters.","authors":"Agnieszka Onisko, Marek J Druzdzel","doi":"10.3390/e26110963","DOIUrl":null,"url":null,"abstract":"<p><p>There is a widely spread belief in the Bayesian network (BN) community that the overall accuracy of results of BN inference is not too sensitive to the precision of their parameters. We present the results of several experiments in which we put this belief to a test in the context of medical diagnostic models. We study the deterioration of accuracy under random symmetric noise but also biased noise that represents overconfidence and underconfidence of human experts.Our results demonstrate consistently, across all models studied, that while noise leads to deterioration of accuracy, small amounts of noise have minimal effect on the diagnostic accuracy of BN models. Overconfidence, common among human experts, appears to be safer than symmetric noise and much safer than underconfidence in terms of the resulting accuracy. Noise in medical laboratory results and disease nodes as well as in nodes forming the Markov blanket of the disease nodes has the largest effect on accuracy. In light of these results, knowledge engineers should moderately worry about the overall quality of the numerical parameters of BNs and direct their effort where it is most needed, as indicated by sensitivity analysis.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592589/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110963","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

There is a widely spread belief in the Bayesian network (BN) community that the overall accuracy of results of BN inference is not too sensitive to the precision of their parameters. We present the results of several experiments in which we put this belief to a test in the context of medical diagnostic models. We study the deterioration of accuracy under random symmetric noise but also biased noise that represents overconfidence and underconfidence of human experts.Our results demonstrate consistently, across all models studied, that while noise leads to deterioration of accuracy, small amounts of noise have minimal effect on the diagnostic accuracy of BN models. Overconfidence, common among human experts, appears to be safer than symmetric noise and much safer than underconfidence in terms of the resulting accuracy. Noise in medical laboratory results and disease nodes as well as in nodes forming the Markov blanket of the disease nodes has the largest effect on accuracy. In light of these results, knowledge engineers should moderately worry about the overall quality of the numerical parameters of BNs and direct their effort where it is most needed, as indicated by sensitivity analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯网络对其参数噪声的敏感性。
贝叶斯网络(BN)界普遍认为,BN 推理结果的总体准确性对其参数的精度并不太敏感。我们以医学诊断模型为背景,介绍了对这一观点进行检验的几项实验结果。我们研究了随机对称噪声以及代表人类专家过度自信和缺乏自信的偏差噪声情况下的准确性下降。我们的结果一致表明,在所研究的所有模型中,虽然噪声会导致准确性下降,但少量噪声对 BN 模型诊断准确性的影响微乎其微。在人类专家中常见的过度自信似乎比对称噪声更安全,而在由此产生的准确性方面,过度自信要比自信不足安全得多。医学实验室结果、疾病节点以及构成疾病节点马尔可夫毯的节点中的噪声对准确性的影响最大。鉴于这些结果,知识工程师应适度担心 BN 数值参数的整体质量,并将精力投入到敏感性分析所指出的最需要的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Inferring About the Average Value of Audit Errors from Sequential Ratio Tests. How Do Transformers Model Physics? Investigating the Simple Harmonic Oscillator. "In Mathematical Language": On Mathematical Foundations of Quantum Foundations. Derangetropy in Probability Distributions and Information Dynamics. Generalized Filter Bank Orthogonal Frequency Division Multiplexing: Low-Complexity Waveform for Ultra-Wide Bandwidth and Flexible Services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1