Application of CRISPR/Cas9 Technology in Rice Germplasm Innovation and Genetic Improvement.

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY Genes Pub Date : 2024-11-20 DOI:10.3390/genes15111492
Jijin Chen, Zhening Miao, Deyan Kong, Anning Zhang, Feiming Wang, Guolan Liu, Xinqiao Yu, Lijun Luo, Yi Liu
{"title":"Application of CRISPR/Cas9 Technology in Rice Germplasm Innovation and Genetic Improvement.","authors":"Jijin Chen, Zhening Miao, Deyan Kong, Anning Zhang, Feiming Wang, Guolan Liu, Xinqiao Yu, Lijun Luo, Yi Liu","doi":"10.3390/genes15111492","DOIUrl":null,"url":null,"abstract":"<p><p>Improving the efficiency of germplasm innovation has always been the aim of rice breeders. Traditional hybrid breeding methods for variety selection rarely meet the practical needs of rice production. The emergence of genome-editing technologies, such as CRISPR/Cas9, provides a new approach to the genetic improvement of crops such as rice. The number of published scientific papers related to \"gene editing\" and \"CRISPR/Cas9\" retrievable on websites both from China and other countries exhibited an increasing trend, year by year, from 2014 to 2023. Research related to gene editing in rice accounts for 33.4% and 12.3% of all the literature on gene editing published in China and other countries, respectively, much higher than that on maize and wheat. This article reviews recent research on CRISPR/Cas9 gene-editing technology in rice, especially germplasm innovation and genetic improvement of commercially promoted varieties with improved traits such as disease, insect, and herbicide resistance, salt tolerance, quality, nutrition, and safety. The aim is to provide a reference for the precise and efficient development of new rice cultivars that meet market demand.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"15 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593773/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes15111492","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the efficiency of germplasm innovation has always been the aim of rice breeders. Traditional hybrid breeding methods for variety selection rarely meet the practical needs of rice production. The emergence of genome-editing technologies, such as CRISPR/Cas9, provides a new approach to the genetic improvement of crops such as rice. The number of published scientific papers related to "gene editing" and "CRISPR/Cas9" retrievable on websites both from China and other countries exhibited an increasing trend, year by year, from 2014 to 2023. Research related to gene editing in rice accounts for 33.4% and 12.3% of all the literature on gene editing published in China and other countries, respectively, much higher than that on maize and wheat. This article reviews recent research on CRISPR/Cas9 gene-editing technology in rice, especially germplasm innovation and genetic improvement of commercially promoted varieties with improved traits such as disease, insect, and herbicide resistance, salt tolerance, quality, nutrition, and safety. The aim is to provide a reference for the precise and efficient development of new rice cultivars that meet market demand.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRISPR/Cas9 技术在水稻种质创新和遗传改良中的应用。
提高种质创新的效率一直是水稻育种工作者的目标。传统的杂交育种方法很少能满足水稻生产的实际需要。CRISPR/Cas9等基因组编辑技术的出现,为水稻等作物的遗传改良提供了一种新方法。从 2014 年到 2023 年,在中国和其他国家的网站上检索到的与 "基因编辑 "和 "CRISPR/Cas9 "相关的已发表科学论文数量呈逐年上升趋势。在中国和其他国家发表的所有基因编辑文献中,与水稻基因编辑相关的研究分别占33.4%和12.3%,远高于玉米和小麦。本文综述了近年来CRISPR/Cas9基因编辑技术在水稻上的应用研究,特别是抗病、抗虫、抗除草剂、耐盐、品质、营养、安全等性状改良的种质创新和商业推广品种的遗传改良。目的是为精确、高效地开发符合市场需求的水稻新品种提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genes
Genes GENETICS & HEREDITY-
CiteScore
5.20
自引率
5.70%
发文量
1975
审稿时长
22.94 days
期刊介绍: Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.
期刊最新文献
Characterization and Phylogenetic Analysis of the First Complete Chloroplast Genome of Shizhenia pinguicula (Orchidaceae: Orchideae). An Updated Analysis of Exon-Skipping Applicability for Duchenne Muscular Dystrophy Using the UMD-DMD Database. Application of CRISPR/Cas9 Technology in Rice Germplasm Innovation and Genetic Improvement. MIR27A rs895819 CC Genotype Severely Reduces miR-27a Plasma Expression Levels. Multiple Osteochondritis Dissecans as Main Manifestation of Multiple Epiphyseal Dysplasia Caused by a Novel Cartilage Oligomeric Matrix Protein Pathogenic Variant: A Clinical Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1