{"title":"Scanning transmission electron tomography to study virus assembly: Review for the retirement of Paul Walther.","authors":"Susanne Wieczorek, Jacomina Krijnse Locker","doi":"10.1111/jmi.13374","DOIUrl":null,"url":null,"abstract":"<p><p>In this short and popular review, we summarise some of our findings analysing the replication cycles of large DNA viruses using scanning transmission electron tomography (STEM tomography) that we applied in the laboratory of Paul Walther. It is also a tribute to a very kind and expert scientist, who recently retired. Transmission electron microscopy (TEM), in particular cryo-EM, has benefited tremendously from recent developments in instrumentation. However, TEM imaging remains limited by the thickness of the specimen and classical thin-section TEM typically generates 2D representations of 3D volumes. Although TEM tomography can partly overcome this limitation, the thickness of the sample, the volume that can be analysed in 3D, remains limiting. STEM tomography can partly overcome this problem, as it allows for the analysis of thicker samples, up to 1 µm in thickness. As such, it is an interesting imaging technique to analyse large DNA viruses, some of which measure 1 µm or more, and which is the focus of our research interest.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13374","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
In this short and popular review, we summarise some of our findings analysing the replication cycles of large DNA viruses using scanning transmission electron tomography (STEM tomography) that we applied in the laboratory of Paul Walther. It is also a tribute to a very kind and expert scientist, who recently retired. Transmission electron microscopy (TEM), in particular cryo-EM, has benefited tremendously from recent developments in instrumentation. However, TEM imaging remains limited by the thickness of the specimen and classical thin-section TEM typically generates 2D representations of 3D volumes. Although TEM tomography can partly overcome this limitation, the thickness of the sample, the volume that can be analysed in 3D, remains limiting. STEM tomography can partly overcome this problem, as it allows for the analysis of thicker samples, up to 1 µm in thickness. As such, it is an interesting imaging technique to analyse large DNA viruses, some of which measure 1 µm or more, and which is the focus of our research interest.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.