Identification and optimization of relevant factors for chronic kidney disease in abdominal obesity patients by machine learning methods: insights from NHANES 2005-2018.
{"title":"Identification and optimization of relevant factors for chronic kidney disease in abdominal obesity patients by machine learning methods: insights from NHANES 2005-2018.","authors":"Xiangling Deng, Lifei Ma, Pin Li, Mengyang He, Ruyue Jin, Yuandong Tao, Hualin Cao, Hengyu Gao, Wenquan Zhou, Kuan Lu, Xiaoye Chen, Wenchao Li, Huixia Zhou","doi":"10.1186/s12944-024-02384-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The intake of dietary antioxidants and glycolipid metabolism are closely related to chronic kidney disease (CKD), particularly among individuals with abdominal obesity. Nevertheless, the cumulative effect of multiple comorbid risk factors on the progression and complications of CKD remains inadequately characterized.</p><p><strong>Methods: </strong>This study analyzed data from the National Health and Nutrition Examination Survey (NHANES) dat abase (2005-2018), to examine potential factors related to CKD, including glycolipid metabolism, dietary antioxidant intake, and pertinent medical history. To explore the associations between these variables and CKD, the present study used a multivariable-adjusted least absolute shrinkage and selection operator (LASSO) regression model, along with a restricted cubic spline (RCS) model. Furthermore, an optimal predictive model was developed for CKD using ten machine learning algorithms and enhanced model interpretability with the Shapley Additive Explanations (SHAP) method.</p><p><strong>Results: </strong>A cohort comprising 8,764 eligible individuals (52% male, including 1,839 CKD patients) with abdominal obesity aged 20-85 years were included. The findings revealed significant positive correlations in patients with abdominal obesity between the presence of CKD and age, a history of heart failure, hypertension, diabetes, elevated lipid accumulation product (LAP) and triglyceride glucose-waist circumference (TyG-WC) levels. Conversely, negative correlations were identified between CKD and variables such as sex, high-density lipoprotein cholesterol (HDL-C) levels, and the composite dietary antioxidant index (CDAI). In parallel, RCS regression analysis revealed significant nonlinear associations between the CDAI, HDL-C, TyG-WC, and CKD among patients with abdominal obesity aged 60-80 years. The development of predictive models demonstrated that the CatBoost model surpassed other models, achieving an accuracy of 86.74% on the validation set. The model's area under the receiver operator curve (AUC) and F1 score were 0.938 and 0.889, respectively. The SHAP values revealed that age was the most significant predictor, followed by diabetes history, hypertension, HDL-C levels, CDAI index, TyG-WC, and LAP.</p><p><strong>Conclusion: </strong>CatBoost models, along with glycolipid metabolism indexes and dietary antioxidant intake, are effective for early CKD detection in patients with abdominal obesity.</p>","PeriodicalId":18073,"journal":{"name":"Lipids in Health and Disease","volume":"23 1","pages":"390"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids in Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12944-024-02384-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The intake of dietary antioxidants and glycolipid metabolism are closely related to chronic kidney disease (CKD), particularly among individuals with abdominal obesity. Nevertheless, the cumulative effect of multiple comorbid risk factors on the progression and complications of CKD remains inadequately characterized.
Methods: This study analyzed data from the National Health and Nutrition Examination Survey (NHANES) dat abase (2005-2018), to examine potential factors related to CKD, including glycolipid metabolism, dietary antioxidant intake, and pertinent medical history. To explore the associations between these variables and CKD, the present study used a multivariable-adjusted least absolute shrinkage and selection operator (LASSO) regression model, along with a restricted cubic spline (RCS) model. Furthermore, an optimal predictive model was developed for CKD using ten machine learning algorithms and enhanced model interpretability with the Shapley Additive Explanations (SHAP) method.
Results: A cohort comprising 8,764 eligible individuals (52% male, including 1,839 CKD patients) with abdominal obesity aged 20-85 years were included. The findings revealed significant positive correlations in patients with abdominal obesity between the presence of CKD and age, a history of heart failure, hypertension, diabetes, elevated lipid accumulation product (LAP) and triglyceride glucose-waist circumference (TyG-WC) levels. Conversely, negative correlations were identified between CKD and variables such as sex, high-density lipoprotein cholesterol (HDL-C) levels, and the composite dietary antioxidant index (CDAI). In parallel, RCS regression analysis revealed significant nonlinear associations between the CDAI, HDL-C, TyG-WC, and CKD among patients with abdominal obesity aged 60-80 years. The development of predictive models demonstrated that the CatBoost model surpassed other models, achieving an accuracy of 86.74% on the validation set. The model's area under the receiver operator curve (AUC) and F1 score were 0.938 and 0.889, respectively. The SHAP values revealed that age was the most significant predictor, followed by diabetes history, hypertension, HDL-C levels, CDAI index, TyG-WC, and LAP.
Conclusion: CatBoost models, along with glycolipid metabolism indexes and dietary antioxidant intake, are effective for early CKD detection in patients with abdominal obesity.
期刊介绍:
Lipids in Health and Disease is an open access, peer-reviewed, journal that publishes articles on all aspects of lipids: their biochemistry, pharmacology, toxicology, role in health and disease, and the synthesis of new lipid compounds.
Lipids in Health and Disease is aimed at all scientists, health professionals and physicians interested in the area of lipids. Lipids are defined here in their broadest sense, to include: cholesterol, essential fatty acids, saturated fatty acids, phospholipids, inositol lipids, second messenger lipids, enzymes and synthetic machinery that is involved in the metabolism of various lipids in the cells and tissues, and also various aspects of lipid transport, etc. In addition, the journal also publishes research that investigates and defines the role of lipids in various physiological processes, pathology and disease. In particular, the journal aims to bridge the gap between the bench and the clinic by publishing articles that are particularly relevant to human diseases and the role of lipids in the management of various diseases.