Marina Kranjac, Piotr Marek Kuś, Saša Prđun, Renata Odžak, Carlo Ignazio Giovanni Tuberoso
{"title":"Chromatography-Based Metabolomics as a Tool in Bioorganic Research of Honey.","authors":"Marina Kranjac, Piotr Marek Kuś, Saša Prđun, Renata Odžak, Carlo Ignazio Giovanni Tuberoso","doi":"10.3390/metabo14110606","DOIUrl":null,"url":null,"abstract":"<p><p>This review presents the latest research on chromatography-based metabolomics for bioorganic research of honey, considering targeted, suspect, and untargeted metabolomics involving metabolite profiling and metabolite fingerprinting. These approaches give an insight into the metabolic diversity of different honey varieties and reveal different classes of organic compounds in the metabolic profiles, among which, key metabolites such as biomarkers and bioactive compounds can be highlighted. Chromatography-based metabolomics strategies have significantly impacted different aspects of bioorganic research, including primary areas such as botanical origins, honey origin traceability, entomological origins, and honey maturity. Through the use of different tools for complex data analysis, these strategies contribute to the detection, assessment, and/or correlation of different honey parameters and attributes. Bioorganic research is mainly focused on phytochemicals and their transformation, but the chemical changes that can occur during the different stages of honey formation remain a challenge. Furthermore, the latest user- and environmentally friendly sample preparation methods and technologies as well as future perspectives and the role of chromatography-based metabolomic strategies in honey characterization are discussed. The objective of this review is to summarize the latest metabolomics strategies contributing to bioorganic research onf honey, with emphasis on the (i) metabolite analysis by gas and liquid chromatography techniques; (ii) key metabolites in the obtained metabolic profiles; (iii) formation and accumulation of biogenic volatile and non-volatile markers; (iv) sample preparation procedures; (v) data analysis, including software and databases; and (vi) conclusions and future perspectives. For the present review, the literature search strategy was based on the PRISMA guidelines and focused on studies published between 2019 and 2024. This review outlines the importance of metabolomics strategies for potential innovations in characterizing honey and unlocking its full bioorganic potential.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"14 11","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo14110606","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This review presents the latest research on chromatography-based metabolomics for bioorganic research of honey, considering targeted, suspect, and untargeted metabolomics involving metabolite profiling and metabolite fingerprinting. These approaches give an insight into the metabolic diversity of different honey varieties and reveal different classes of organic compounds in the metabolic profiles, among which, key metabolites such as biomarkers and bioactive compounds can be highlighted. Chromatography-based metabolomics strategies have significantly impacted different aspects of bioorganic research, including primary areas such as botanical origins, honey origin traceability, entomological origins, and honey maturity. Through the use of different tools for complex data analysis, these strategies contribute to the detection, assessment, and/or correlation of different honey parameters and attributes. Bioorganic research is mainly focused on phytochemicals and their transformation, but the chemical changes that can occur during the different stages of honey formation remain a challenge. Furthermore, the latest user- and environmentally friendly sample preparation methods and technologies as well as future perspectives and the role of chromatography-based metabolomic strategies in honey characterization are discussed. The objective of this review is to summarize the latest metabolomics strategies contributing to bioorganic research onf honey, with emphasis on the (i) metabolite analysis by gas and liquid chromatography techniques; (ii) key metabolites in the obtained metabolic profiles; (iii) formation and accumulation of biogenic volatile and non-volatile markers; (iv) sample preparation procedures; (v) data analysis, including software and databases; and (vi) conclusions and future perspectives. For the present review, the literature search strategy was based on the PRISMA guidelines and focused on studies published between 2019 and 2024. This review outlines the importance of metabolomics strategies for potential innovations in characterizing honey and unlocking its full bioorganic potential.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.