References [...].
References [...].
Background: Vitamin D deficiency (VDD) is highly prevalent among people living with human immunodeficiency virus (HIV), with reported rates of insufficiency and deficiency substantially higher than in many general-population cohorts. This study aims to assess the prevalence of vitamin D deficiency and to investigate the risk factors contributing to its occurrence among people living with HIV who are receiving antiretroviral therapy (ART) and are registered at the Craiova Regional Center (CRC).
Methods: A retrospective study was conducted from May 2024 to August 2024, including individuals with HIV aged 18 years and older who were registered at the CRC.
Results: A total of 138 patients were included in the study. The prevalence of vitamin D deficiency (<20 ng/mL) and vitamin D insufficiency (20-29.9 ng/mL) was 36.2% and 33.3%, respectively, with an average vitamin D level of 26.4 ± 9.9 ng/mL. Vitamin D deficiency was associated with obesity (p = 0.0013), high HIV viral load (p = 0.043), low CD4 nadir (<200 cells/mm3, p = 0.006), prolonged ART exposure (p = 0.002), and the use of tenofovir disoproxil fumarate or protease inhibitor-containing regimens (p = 0.034 and p = 0.016, respectively).
Conclusions: These findings indicate that monitoring vitamin D levels could be particularly relevant for patients with HIV with higher-risk profiles. However, our study included a relatively small number of participants, so further research in larger cohorts is needed to better understand these patterns.
The Dartmoor Estate Tea plantation in Devon, UK, benefits from a unique microclimate and diverse soil conditions, which, together with its different processing methods, contribute to the distinctive flavours and chemical profiles of its teas.
Objectives: The chemical diversity of Dartmoor tea was assessed via samples collected during processing of green and black tea.
Methods: Leaf samples were collected during the processing of green and black tea and analysed using Flow Infusion Electrospray Ionisation Mass Spectrometry (FIE-MS).
Results: For green tea processing, random forest regression identified features associated with the processing steps, resulting in a total of 272 m/z explanatory features. The analysis of black tea processing (4 h and overnight oxidation prior to roasting) yielded 209 discriminatory m/z features (4 h) and the model for the overnight oxidation and roasting treatments yielded 605 discriminatory m/z features. K-means clustering was performed on the percentage of relative abundance of the discriminatory m/z features. This grouped the discriminatory m/z features into 15 clusters of features showing similar trends across the processing stages. Functional and structural enrichment analysis was performed on each of the clusters and significant metabolic pathways included metabolism and biosynthesis of flavonoids, amino acids and lipids, the Pentose phosphate pathway, and the TCA cycle. Many discriminatory features were putatively classified as catechin-derived flavan-3-ols and flavonol glycosides.
Conclusions: This research highlights the complex role that processing plays in shaping tea quality. It provides valuable insights into the metabolic pathways that influence tea production and emphasises how these factors determine the final chemical profile and sensory characteristics of tea.
Background:Rhodopseudomonas palustris is a metabolically versatile bacterium with significant biotechnological potential, including the ability to catabolize lignin and its heterogeneous breakdown products. Understanding the molecular determinants of growth on lignin-derived compounds is essential for advancing lignin valorization strategies under both aerobic and anaerobic conditions. Methods:R. palustris was cultivated on multiple lignin breakdown products (LBPs), including p-coumaryl alcohol, coniferyl alcohol, sinapyl alcohol, p-coumarate, sodium ferulate, and kraft lignin. Condition-specific transcriptomics and proteomics datasets were generated and used as input features to train machine-learning models, with experimentally measured growth rates as the prediction target. Artificial Neural Networks (ANNs), Random Forest (RF), and Support Vector Machine (SVM) models were evaluated and compared. Permutation feature importance analysis was applied to identify genes and proteins most influential for growth. Results: Among the tested models, ANNs achieved the highest predictive performance, with accuracies of 94% for transcriptomics-based models and 96% for proteomics-based models. Feature importance analysis identified the top twenty growth-associated genes and proteins for each omics layer. Integrating transcriptomic and proteomic results revealed eight key transport proteins that consistently influenced growth across LBP conditions. Re-training ANN models using only these eight transport proteins maintained high predictive accuracy, achieving 86% for proteomics and 76% for transcriptomics. Conclusions: This study demonstrates the effectiveness of ANN-based models for predicting growth-associated genes and proteins in R. palustris. The identification of a small set of key transport proteins provides mechanistic insight into lignin catabolism and highlights promising targets for metabolic engineering aimed at improving lignin utilization.
Background/objectives: The quality of dried chili peppers is critically influenced by geographical origin, yet the metabolic basis for these differences remains insufficiently explored. This study sought to elucidate the region-specific metabolic profiles and their association with key quality traits in the pepper cultivar 'Hong Guan 6'.
Methods: Fruits harvested from three major cultivation regions in China were analyzed. We quantified fat and capsaicinoid content and employed an integrated LC-MS and GC-MS untargeted metabolomics approach to characterize the metabolite composition. Multivariate statistical analyses were applied to identify differentially abundant metabolites (DAMs) and uncover their related biochemical pathways.
Results: Significant regional variations in fat and capsaicinoid content were observed, with peppers from Pengzhou (PZ) exhibiting the highest capsaicin levels. Metabolomic profiling revealed 529 metabolites that were significantly more abundant in PZ samples. These metabolites were enriched in several key pathways, including beta-alanine metabolism, plant hormone signal transduction, and N-glycan biosynthesis. Specifically, elevated levels of β-alanine and malonate in the beta-alanine metabolism pathway were detected in PZ and Anyue (AY) samples, suggesting a potential biochemical mechanism for their enhanced fat synthesis.
Conclusions: Our findings demonstrate that geographical origin significantly reprograms the pepper metabolome, directly impacting quality attributes. The results provide crucial insights into the biochemical mechanisms, particularly those involving beta-alanine metabolism, that underpin the differences in critical quality traits such as fat content.
In Pteropus spp., metabolic bone disease has been consistently associated with fruit-based diets that are deficient in calcium, vitamin D precursors, and protein, as well as limited ultraviolet B (UVB) exposure, as reported in zoological surveys and clinical observations. Comparative mammalian physiology suggests that dysregulation of the endocrine axis involving parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), calcitonin, and calcitriol may contribute to disease development, although direct species-specific endocrine data in flying foxes remain scarce. This narrative review synthesizes current knowledge from published zoological reports, clinical observations, and comparative mammalian physiology regarding the etiology, pathophysiology, and clinical expression of metabolic bone disease in captive flying foxes. Much of the available evidence is derived from juvenile Pteropus vampyrus, and its applicability to other Pteropus species remains to be fully established. The limited availability and consistency of existing data, together with the scarcity of controlled experimental and longitudinal studies, necessarily constrain the conclusions that can be drawn. Nevertheless, this review highlights key nutritional and environmental risk factors and summarizes evidence-informed preventive management strategies to improve skeletal health and welfare in managed Pteropus populations.
Background: High-intensity interval training (HIT) is a time-efficient strategy to improve metabolic health in children, but its impact on inflammatory markers is still unclear. Therefore, we conducted a meta-analysis to examine the role of HIT on pro-inflammatory cytokines including C-reactive protein (CRP), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in children with overweight/obesity. Methods: A meta-analysis was conducted following PRISMA guidelines. PubMed, Web of Science, Scopus, and Embase were searched up to 31 July 2025, for studies involving children with overweight/obesity aged 6 to 18 years. Randomized controlled trials and non-randomized controlled trials with outcome measurements that included CRP, IL-6, and TNF-α were included. Random-effects models were used to aggregate a mean effect size (ES) with 95% confidence intervals (CI), and potential moderators were explored. Results: In total, 768 participants from 15 studies were included. HIT significantly improved CRP (574 participants, 13 studies, SMD = -0.63, 95% CI: -1.02 to -0.24, p < 0.01) when compared to control group/pre-intervention. There were no significant effects on IL-6 and TNF-α, and no differences when compared to moderate-intensity training. Subgroup analyses indicated greater effectiveness in intervention duration, work-and-rest ratio, and work time were the significant moderators (p < 0.05). Conclusions: High-intensity interval training is effective for reducing CRP levels in children with obesity. Intervention duration, work-and-rest ratio, and work time can affect the intervention effects of HIT.
Background/objectives: Watermelon (Citrullus lanatus) processing generates substantial quantities of rind, seeds, and residual pulp that are typically discarded despite being rich in polyunsaturated fatty acids, polar lipids, carotenoids, and phenolic compounds. These amphiphilic bioactives are increasingly recognized for their roles in modulating oxidative stress, inflammation, and platelet activation; however, the lipid fraction of watermelon by-products remains insufficiently characterized. This study examined organic watermelon juice and its by-products to isolate, characterize, and evaluate extracts enriched in amphiphilic and lipophilic bioactives, with emphasis on their in vitro antioxidant, anti-inflammatory, and antithrombotic properties.
Methods: total lipids were extracted using a modified Bligh-Dyer method and fractionated into total amphiphilic compounds (TAC) and total lipophilic compounds (TLC) via counter-current distribution. Phenolic and carotenoid levels were quantified, and antioxidant capacity was assessed using DPPH, ABTS, and FRAP assays. Anti-platelet and anti-inflammatory activities were evaluated against ADP- and PAF-induced platelet aggregation. Structural characterization of polar lipids was performed using ATR-FTIR, and LC-MS was used to determine fatty acid composition and phospholipid structures.
Results and discussion: Carotenoids were primarily concentrated in the TLC fractions with high ABTS values for antioxidant activity, while phenolics mostly in the juice, the TACs of which showed the strongest total antioxidant capacity based on DPPH. TAC fractions of both samples showed also higher FRAP values of antioxidant activity, likely due to greater phenolic content. TAC extracts also exhibited notable inhibition of PAF- and ADP-induced platelet aggregation, associated with their enriched ω-3 PUFA profiles and favorable ω-6/ω-3 ratios based on their LC-MS profiles.
Conclusions: Overall, watermelon products (juice) and by-products represent a valuable and sustainable source of amphiphilic bioactives with significant antioxidant, anti-inflammatory, and anti-platelet potential, supporting their future use in functional foods, nutraceuticals, and cosmetic applications.
Background: This study aimed to identify distinct metabolic signatures associated with disease progression by integrating high-resolution computed tomography (HRCT) visual scoring with comprehensive metabolomic profiling. Materials and Methods: This single-center, cross-sectional study enrolled 60 idiopathic pulmonary fibrosis/interstitial lung disease (IPF/ILD) patients with usual interstitial pneumonia pattern. Participants underwent standardized pulmonary function testing, HRCT imaging, and peripheral blood collection for metabolomic analysis using one-dimensional hydrogen nuclear magnetic resonance spectroscopy and ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. Linear regression analysis integrated radiographic scores with metabolomic profiles, adjusted for multiple covariates. Results: Stable IPF/ILD exhibited moderate negative correlations between the six most significant metabolites and HRCT scores (r = -0.27 to -0.51), along with a high abundance of specific phospholipids (triacylglycerol, monoacylglycerol, phosphatidylglycerol, phosphatidylethanolamine, diacylglycerol), sphingomyelin, ceramide, and acylcarnitine. In contrast, progressive disease showed weak positive correlations between the six most significant metabolites and HRCT scores (r = 0.19-0.26), and moderate negative correlation between specific triacylglycerol species and HRCT scores (r = -0.37-0.4). Furthermore, metabolomic analysis in individuals with progressive disease revealed both high and low abundances of specific phospholipid species (including high and low triacylglycerol species, as well as low levels of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, and phosphatidylinositol), along with high levels of certain sphingomyelin, ceramide, taurine, and purine bases, and low levels of xanthine and lactic acid observed. Conclusions: Integration of systematic HRCT semi-quantitative scoring with metabolomic profiling successfully differentiated stable from progressive IPF/ILD through distinct molecular-radiographic signatures.
Background: Drought stress is a primary environmental constraint limiting crop growth and productivity. Current drought-related plant research predominantly focuses on whole-leaf analyses, neglecting the spatial heterogeneity of metabolites within leaf tissues. Methods: This study combined transcriptomic and metabolomic approaches to investigate spatially distinct metabolic responses in marginal versus central regions of Medicago lupulina L. leaves under PEG-simulated drought. Results: Findings demonstrated that TCA cycle metabolites exhibited relative stability between leaf margins and centers under drought conditions, suggesting preserved core metabolic functionality in central tissues to sustain stress tolerance. Additionally, shikimic acid displayed a significantly reduced regional gradient in stressed tissues (PEG Margin vs. PEG Center) compared to controls. Phenylalanine, tryptophan, liquiritigenin, isoliquiritigenin, coproporphyrin III, and coproporphyrinogen III itself exhibited significantly increased internal gradient differences in stressed groups compared to control groups. The coordinated upregulation of key biosynthetic genes (e.g., TAT, AST, FNS II) in both the marginal and central regions of stressed leaves indicates a metabolic shift toward the biosynthesis of downstream defensive flavonoids. These metabolites and genes accumulated preferentially in margin regions of stressed leaves, indicative of localized activation of defense-associated metabolic pathways. Conclusions: This study reveals a spatially partitioned metabolic response to drought stress in M. lupulina leaves, where defensive metabolism is preferentially enhanced at the leaf margins while core metabolic homeostasis is maintained. These findings provide new spatial insights into plant drought acclimation and identify potential targets for improving crop resilience through the fine-tuning of local metabolism.

