Carbon-Doped TiO2 Nanofiltration Membranes Prepared by Interfacial Reaction of Glycerol with TiCl4 Vapor.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL Membranes Pub Date : 2024-11-07 DOI:10.3390/membranes14110233
Wenjing Zhang, Jiangzhou Luo, Honglei Ling, Lei Huang, Song Xue
{"title":"Carbon-Doped TiO<sub>2</sub> Nanofiltration Membranes Prepared by Interfacial Reaction of Glycerol with TiCl<sub>4</sub> Vapor.","authors":"Wenjing Zhang, Jiangzhou Luo, Honglei Ling, Lei Huang, Song Xue","doi":"10.3390/membranes14110233","DOIUrl":null,"url":null,"abstract":"<p><p>In the pursuit of developing advanced nanofiltration membranes with high permeation flux for organic solvents, a TiO<sub>2</sub> nanofilm was synthesized via a vapor-liquid interfacial reaction on a flat-sheet α-Al<sub>2</sub>O<sub>3</sub> ceramic support. This process involves the reaction of glycerol, an organic precursor with a structure featuring 1,2-diol and 1,3-diol groups, with TiCl<sub>4</sub> vapor to form organometallic hybrid films. Subsequent calcination in air at 250 °C transforms these hybrid films into carbon-doped titanium oxide nanofilms. The unique structure of glycerol plays a crucial role in determining the properties of the resulting nanopores, which exhibit high solvent permeance and effective solute rejection. The synthesized carbon-doped TiO<sub>2</sub> nanofiltration membranes demonstrated impressive performance, achieving a pure methanol permeability as high as 90.9 L·m<sup>-2</sup>·h <sup>-1</sup>·bar<sup>-1</sup>. Moreover, these membranes exhibited a rejection rate of 93.2% for Congo Red in a methanol solution, underscoring their efficacy in separating solutes from solvents. The rigidity of the nanopores within these nanofilms, when supported on ceramic materials, confers high chemical stability even in the presence of polar solvents. This robustness makes the carbon-doped TiO<sub>2</sub> nanofilms suitable for applications in the purification and recovery of organic solvents.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 11","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14110233","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the pursuit of developing advanced nanofiltration membranes with high permeation flux for organic solvents, a TiO2 nanofilm was synthesized via a vapor-liquid interfacial reaction on a flat-sheet α-Al2O3 ceramic support. This process involves the reaction of glycerol, an organic precursor with a structure featuring 1,2-diol and 1,3-diol groups, with TiCl4 vapor to form organometallic hybrid films. Subsequent calcination in air at 250 °C transforms these hybrid films into carbon-doped titanium oxide nanofilms. The unique structure of glycerol plays a crucial role in determining the properties of the resulting nanopores, which exhibit high solvent permeance and effective solute rejection. The synthesized carbon-doped TiO2 nanofiltration membranes demonstrated impressive performance, achieving a pure methanol permeability as high as 90.9 L·m-2·h -1·bar-1. Moreover, these membranes exhibited a rejection rate of 93.2% for Congo Red in a methanol solution, underscoring their efficacy in separating solutes from solvents. The rigidity of the nanopores within these nanofilms, when supported on ceramic materials, confers high chemical stability even in the presence of polar solvents. This robustness makes the carbon-doped TiO2 nanofilms suitable for applications in the purification and recovery of organic solvents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过甘油与 TiCl4 蒸汽的界面反应制备的掺碳 TiO2 纳滤膜。
为了开发出对有机溶剂具有高渗透通量的先进纳滤膜,研究人员在扁平片状 α-Al2O3 陶瓷支持物上通过气液界面反应合成了 TiO2 纳米薄膜。这一过程包括甘油(一种具有 1,2-二醇和 1,3- 二醇基团结构的有机前体)与 TiCl4 蒸汽反应,形成有机金属杂化薄膜。随后在 250 °C 的空气中煅烧,这些杂化薄膜就变成了掺碳氧化钛纳米薄膜。甘油的独特结构在决定所产生的纳米孔性能方面起着至关重要的作用,这些纳米孔具有高溶剂渗透性和有效的溶质排斥性。合成的掺碳 TiO2 纳米滤膜表现出令人印象深刻的性能,纯甲醇渗透率高达 90.9 L-m-2-h -1 -bar-1。此外,这些膜对甲醇溶液中刚果红的截留率高达 93.2%,显示了它们从溶剂中分离溶质的功效。在陶瓷材料的支撑下,这些纳米膜内的纳米孔具有很强的刚性,即使在极性溶剂存在的情况下也能保持很高的化学稳定性。这种坚固性使掺碳 TiO2 纳米薄膜适用于有机溶剂的净化和回收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Rose Bengal
阿拉丁
Congo Red
阿拉丁
Indigo Carmine
阿拉丁
Rhodamine B
阿拉丁
Methyl Orange
阿拉丁
Azobenzene
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
Hybrid Version of the Kedem-Katchalsky-Peusner Equations for Diffusive and Electrical Transport Processes in Membrane. Evaluation of Ceramic Membrane Filtration for Alternatives to Microplastics in Cosmetic Formulations Using FlowCam Analysis. Enhancing Virus Filter Performance Through Pretreatment by Membrane Adsorbers. Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses. Spacer Designs for Improved Hydrodynamics and Filtration Efficiency in Sea Water Reverse Osmosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1