Development and Characterization of a Lysosome-Targeting SLC3A2/PD-L1 Bispecific Antibody-Drug Conjugate for Enhanced Anti-Tumor Efficacy in Solid Tumors.

IF 5.3 2区 医学 Q1 ONCOLOGY Molecular Cancer Therapeutics Pub Date : 2024-11-27 DOI:10.1158/1535-7163.MCT-24-0319
Zeng Wang, Meijun Zheng, Mengyao Li, Huaqing Lu, Nanxi Liu, Yongdong Chen, Nian Yang, Wanqin Zeng, Yijun Dong, Jia Li, Zhixiong Zhu, Chen Yang, Zongliang Zhang, Qizhong Lu, Hexian Li, Liangxue Zhou, Hui Yang, Aiping Tong
{"title":"Development and Characterization of a Lysosome-Targeting SLC3A2/PD-L1 Bispecific Antibody-Drug Conjugate for Enhanced Anti-Tumor Efficacy in Solid Tumors.","authors":"Zeng Wang, Meijun Zheng, Mengyao Li, Huaqing Lu, Nanxi Liu, Yongdong Chen, Nian Yang, Wanqin Zeng, Yijun Dong, Jia Li, Zhixiong Zhu, Chen Yang, Zongliang Zhang, Qizhong Lu, Hexian Li, Liangxue Zhou, Hui Yang, Aiping Tong","doi":"10.1158/1535-7163.MCT-24-0319","DOIUrl":null,"url":null,"abstract":"<p><p>Bispecific antibodies (BsAbs) and antibody-drug conjugates (ADCs) have shown significant promise in cancer treatment, enhancing drug selectivity and therapeutic efficacy as demonstrated in multiple clinical studies. Bispecific antibody-drug conjugates (BsADCs), which combine the targeting capabilities of BsAbs with the cytotoxic potential of ADCs, offer a novel approach to overcoming several challenges associated with ADCs, including limited internalization, off-target toxicity, and drug resistance. In this study, we identified solute carrier family 3 member 2 (SLC3A2) as a highly expressed protein in a variety of solid tumors, making it a promising therapeutic target. We developed a bispecific antibody targeting SLC3A2 and PD-L1, and conjugated it to monomethyl auristatin E (MMAE) to create the SLC3A2/PD-L1 BsADC. The SLC3A2/PD-L1 BsAb effectively blocked PD-1 binding to PD-L1 and activated T cells, while also facilitating lysosomal targeting and degradation of poorly internalized PD-L1 antibodies. The SLC3A2/PD-L1 BsADC demonstrated superior anti-tumor efficacy in PD-L1 low-expressing tumor cells compared to single-target ADCs in both in vitro studies and in multiple xenograft and immunocompetent mouse models. Overall, our engineered SLC3A2/PD-L1 BsADC exhibited enhanced internalization and improved tumor cell targeting, highlighting the potential of lysosome-targeting BsAbs in advancing ADC therapeutic strategies for solid tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0319","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bispecific antibodies (BsAbs) and antibody-drug conjugates (ADCs) have shown significant promise in cancer treatment, enhancing drug selectivity and therapeutic efficacy as demonstrated in multiple clinical studies. Bispecific antibody-drug conjugates (BsADCs), which combine the targeting capabilities of BsAbs with the cytotoxic potential of ADCs, offer a novel approach to overcoming several challenges associated with ADCs, including limited internalization, off-target toxicity, and drug resistance. In this study, we identified solute carrier family 3 member 2 (SLC3A2) as a highly expressed protein in a variety of solid tumors, making it a promising therapeutic target. We developed a bispecific antibody targeting SLC3A2 and PD-L1, and conjugated it to monomethyl auristatin E (MMAE) to create the SLC3A2/PD-L1 BsADC. The SLC3A2/PD-L1 BsAb effectively blocked PD-1 binding to PD-L1 and activated T cells, while also facilitating lysosomal targeting and degradation of poorly internalized PD-L1 antibodies. The SLC3A2/PD-L1 BsADC demonstrated superior anti-tumor efficacy in PD-L1 low-expressing tumor cells compared to single-target ADCs in both in vitro studies and in multiple xenograft and immunocompetent mouse models. Overall, our engineered SLC3A2/PD-L1 BsADC exhibited enhanced internalization and improved tumor cell targeting, highlighting the potential of lysosome-targeting BsAbs in advancing ADC therapeutic strategies for solid tumors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发溶酶体靶向 SLC3A2/PD-L1 双特异性抗体-药物共轭物并确定其特性,增强实体瘤的抗肿瘤疗效
多项临床研究表明,双特异性抗体(BsAbs)和抗体药物共轭物(ADCs)在癌症治疗中大有可为,可提高药物选择性和疗效。双特异性抗体-药物共轭物(BsADCs)结合了 BsAbs 的靶向能力和 ADCs 的细胞毒性潜力,为克服与 ADCs 相关的一些挑战(包括有限的内化、脱靶毒性和耐药性)提供了一种新方法。在这项研究中,我们发现溶质运载家族 3 成员 2(SLC3A2)是一种在多种实体瘤中高表达的蛋白质,因此它是一个很有前景的治疗靶点。我们开发了一种靶向 SLC3A2 和 PD-L1 的双特异性抗体,并将其与单甲基金丝桃素 E(MMAE)共轭,制成了 SLC3A2/PD-L1 BsADC。SLC3A2/PD-L1 BsAb 能有效阻断 PD-1 与 PD-L1 和活化 T 细胞的结合,同时还能促进溶酶体靶向和降解内化不良的 PD-L1 抗体。与单靶点 ADC 相比,SLC3A2/PD-L1 BsADC 在体外研究以及多种异种移植和免疫功能健全的小鼠模型中对 PD-L1 低表达肿瘤细胞的抗肿瘤疗效都更胜一筹。总之,我们设计的 SLC3A2/PD-L1 BsADC 表现出更强的内化能力和更好的肿瘤细胞靶向性,突显了溶酶体靶向 BsAbs 在推进实体瘤 ADC 治疗策略方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
期刊最新文献
Development and Characterization of a Lysosome-Targeting SLC3A2/PD-L1 Bispecific Antibody-Drug Conjugate for Enhanced Anti-Tumor Efficacy in Solid Tumors. Response to systemic therapies in patient-derived cell lines from primary and recurrent adult granulosa cell tumors. Targeting CDK7 enhances the antitumor efficacy of enzalutamide in androgen receptor-positive triple-negative breast cancer by inhibiting c-MYC-mediated tumorigenesis. STAT5 activation enhances adoptive therapy combined with peptide vaccination by preventing PD-1 inhibition. A novel designed anti-PD-L1/OX40 bispecific antibody augments both peripheral and tumor-associated immune responses for boosting anti-tumor immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1