Gold Nanoparticles: Multifunctional Properties, Synthesis, and Future Prospects.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-11-11 DOI:10.3390/nano14221805
Hatice Duman, Emir Akdaşçi, Furkan Eker, Mikhael Bechelany, Sercan Karav
{"title":"Gold Nanoparticles: Multifunctional Properties, Synthesis, and Future Prospects.","authors":"Hatice Duman, Emir Akdaşçi, Furkan Eker, Mikhael Bechelany, Sercan Karav","doi":"10.3390/nano14221805","DOIUrl":null,"url":null,"abstract":"<p><p>Gold nanoparticles (NPs) are among the most commonly employed metal NPs in biological applications, with distinctive physicochemical features. Their extraordinary optical properties, stemming from strong localized surface plasmon resonance (LSPR), contribute to the development of novel approaches in the areas of bioimaging, biosensing, and cancer research, especially for photothermal and photodynamic therapy. The ease of functionalization with various ligands provides a novel approach to the precise delivery of these molecules to targeted areas. Gold NPs' ability to transfer heat and electricity positions them as valuable materials for advancing thermal management and electronic systems. Moreover, their inherent characteristics, such as inertness, give rise to the synthesis of novel antibacterial and antioxidant agents as they provide a biocompatible and low-toxicity approach. Chemical and physical synthesis methods are utilized to produce gold NPs. The pursuit of more ecologically sustainable and economically viable large-scale technologies, such as environmentally benign biological processes referred to as green/biological synthesis, has garnered increasing interest among global researchers. Green synthesis methods are more favorable than other synthesis techniques as they minimize the necessity for hazardous chemicals in the reduction process due to their simplicity, cost-effectiveness, energy efficiency, and biocompatibility. This article discusses the importance of gold NPs, their optical, conductivity, antibacterial, antioxidant, and anticancer properties, synthesis methods, contemporary uses, and biosafety, emphasizing the need to understand toxicology principles and green commercialization strategies.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 22","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14221805","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gold nanoparticles (NPs) are among the most commonly employed metal NPs in biological applications, with distinctive physicochemical features. Their extraordinary optical properties, stemming from strong localized surface plasmon resonance (LSPR), contribute to the development of novel approaches in the areas of bioimaging, biosensing, and cancer research, especially for photothermal and photodynamic therapy. The ease of functionalization with various ligands provides a novel approach to the precise delivery of these molecules to targeted areas. Gold NPs' ability to transfer heat and electricity positions them as valuable materials for advancing thermal management and electronic systems. Moreover, their inherent characteristics, such as inertness, give rise to the synthesis of novel antibacterial and antioxidant agents as they provide a biocompatible and low-toxicity approach. Chemical and physical synthesis methods are utilized to produce gold NPs. The pursuit of more ecologically sustainable and economically viable large-scale technologies, such as environmentally benign biological processes referred to as green/biological synthesis, has garnered increasing interest among global researchers. Green synthesis methods are more favorable than other synthesis techniques as they minimize the necessity for hazardous chemicals in the reduction process due to their simplicity, cost-effectiveness, energy efficiency, and biocompatibility. This article discusses the importance of gold NPs, their optical, conductivity, antibacterial, antioxidant, and anticancer properties, synthesis methods, contemporary uses, and biosafety, emphasizing the need to understand toxicology principles and green commercialization strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金纳米粒子:金纳米颗粒:多功能特性、合成与未来展望》。
金纳米粒子(NPs)是生物应用中最常用的金属 NPs 之一,具有独特的物理化学特征。其非凡的光学特性源于强大的局部表面等离子体共振(LSPR),有助于在生物成像、生物传感和癌症研究领域开发新的方法,特别是用于光热和光动力疗法。各种配体易于功能化,为将这些分子精确输送到目标区域提供了一种新方法。金 NPs 能够传递热量和电能,是推动热管理和电子系统发展的重要材料。此外,金的固有特性(如惰性)为合成新型抗菌剂和抗氧化剂提供了生物相容性和低毒性的方法。化学和物理合成方法可用于生产金纳米粒子。全球研究人员对更具生态可持续性和经济可行性的大规模技术的追求,如对环境无害的生物过程(称为绿色/生物合成),已引起越来越多的兴趣。与其他合成技术相比,绿色合成方法因其简便性、成本效益、能源效率和生物兼容性,最大限度地减少了还原过程中对有害化学物质的需求,因而更为有利。本文讨论了金纳米粒子的重要性、其光学、导电、抗菌、抗氧化和抗癌特性、合成方法、当代用途和生物安全性,强调了了解毒理学原理和绿色商业化战略的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Electric Field-Enhanced SERS Detection Using MoS2-Coated Patterned Si Substrate with Micro-Pyramid Pits. Synthesis and Characterization of Microcapsules as Fillers for Self-Healing Dental Composites. Nano-Silver-Loaded Activated Carbon Material Derived from Waste Rice Noodles: Adsorption and Antibacterial Performance. Effective Piecewise Mass Distributions for Optimal Energy Eigenvalues of a Particle in Low-Dimensional Heterojunctions. Thermal Decomposition of Core-Shell-Structured RDX@AlH3, HMX@AlH3, and CL-20@AlH3 Nanoparticles: Reactive Molecular Dynamics Simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1