Saleh Alotaibi, Hamad Almujibah, Khalaf Alla Adam Mohamed, Adil A M Elhassan, Badr T Alsulami, Abdullah Alsaluli, Afaq Khattak
{"title":"Towards Cleaner Cities: Estimating Vehicle-Induced PM<sub>2.5</sub> with Hybrid EBM-CMA-ES Modeling.","authors":"Saleh Alotaibi, Hamad Almujibah, Khalaf Alla Adam Mohamed, Adil A M Elhassan, Badr T Alsulami, Abdullah Alsaluli, Afaq Khattak","doi":"10.3390/toxics12110827","DOIUrl":null,"url":null,"abstract":"<p><p>In developing countries, vehicle emissions are a major source of atmospheric pollution, worsened by aging vehicle fleets and less stringent emissions regulations. This results in elevated levels of particulate matter, contributing to the degradation of urban air quality and increasing concerns over the broader effects of atmospheric emissions on human health. This study proposes a Hybrid Explainable Boosting Machine (EBM) framework, optimized using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), to predict vehicle-related PM<sub>2.5</sub> concentrations and analyze contributing factors. Air quality data were collected from Open-Seneca sensors installed along the Nairobi Expressway, alongside meteorological and traffic data. The CMA-ES-tuned EBM model achieved a Mean Absolute Error (MAE) of 2.033 and an R<sup>2</sup> of 0.843, outperforming other models. A key strength of the EBM is its interpretability, revealing that the location was the most critical factor influencing PM<sub>2.5</sub> concentrations, followed by humidity and temperature. Elevated PM<sub>2.5</sub> levels were observed near the Westlands roundabout, and medium to high humidity correlated with higher PM<sub>2.5</sub> levels. Furthermore, the interaction between humidity and traffic volume played a significant role in determining PM<sub>2.5</sub> concentrations. By combining CMA-ES for hyperparameter optimization and EBM for prediction and interpretation, this study provides both high predictive accuracy and valuable insights into the environmental drivers of urban air pollution, providing practical guidance for air quality management.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12110827","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In developing countries, vehicle emissions are a major source of atmospheric pollution, worsened by aging vehicle fleets and less stringent emissions regulations. This results in elevated levels of particulate matter, contributing to the degradation of urban air quality and increasing concerns over the broader effects of atmospheric emissions on human health. This study proposes a Hybrid Explainable Boosting Machine (EBM) framework, optimized using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), to predict vehicle-related PM2.5 concentrations and analyze contributing factors. Air quality data were collected from Open-Seneca sensors installed along the Nairobi Expressway, alongside meteorological and traffic data. The CMA-ES-tuned EBM model achieved a Mean Absolute Error (MAE) of 2.033 and an R2 of 0.843, outperforming other models. A key strength of the EBM is its interpretability, revealing that the location was the most critical factor influencing PM2.5 concentrations, followed by humidity and temperature. Elevated PM2.5 levels were observed near the Westlands roundabout, and medium to high humidity correlated with higher PM2.5 levels. Furthermore, the interaction between humidity and traffic volume played a significant role in determining PM2.5 concentrations. By combining CMA-ES for hyperparameter optimization and EBM for prediction and interpretation, this study provides both high predictive accuracy and valuable insights into the environmental drivers of urban air pollution, providing practical guidance for air quality management.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering:
The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil);
Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products;
Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans;
Approaches to assess the risks of chemicals and materials to humans and the environment;
Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.