Younes Ledmaoui, Adila El Maghraoui, Mohamed El Aroussi, Rachid Saadane
{"title":"Enhanced Fault Detection in Photovoltaic Panels Using CNN-Based Classification with PyQt5 Implementation.","authors":"Younes Ledmaoui, Adila El Maghraoui, Mohamed El Aroussi, Rachid Saadane","doi":"10.3390/s24227407","DOIUrl":null,"url":null,"abstract":"<p><p>Solar photovoltaic systems have increasingly become essential for harvesting renewable energy. However, as these systems grow in prevalence, the issue of the end of life of modules is also increasing. Regular maintenance and inspection are vital to extend the lifespan of these systems, minimize energy losses, and protect the environment. This paper presents an innovative explainable AI model for detecting anomalies in solar photovoltaic panels using an enhanced convolutional neural network (CNN) and the VGG16 architecture. The model effectively identifies physical and electrical changes, such as dust and bird droppings, and is implemented using the PyQt5 Python tool to create a user-friendly interface that facilitates decision-making for users. Key processes included dataset balancing through oversampling and data augmentation to expand the dataset. The model achieved impressive performance metrics: 91.46% accuracy, 98.29% specificity, and an F1 score of 91.67%. Overall, it enhances power generation efficiency and prolongs the lifespan of photovoltaic systems, while minimizing environmental risks.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 22","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24227407","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solar photovoltaic systems have increasingly become essential for harvesting renewable energy. However, as these systems grow in prevalence, the issue of the end of life of modules is also increasing. Regular maintenance and inspection are vital to extend the lifespan of these systems, minimize energy losses, and protect the environment. This paper presents an innovative explainable AI model for detecting anomalies in solar photovoltaic panels using an enhanced convolutional neural network (CNN) and the VGG16 architecture. The model effectively identifies physical and electrical changes, such as dust and bird droppings, and is implemented using the PyQt5 Python tool to create a user-friendly interface that facilitates decision-making for users. Key processes included dataset balancing through oversampling and data augmentation to expand the dataset. The model achieved impressive performance metrics: 91.46% accuracy, 98.29% specificity, and an F1 score of 91.67%. Overall, it enhances power generation efficiency and prolongs the lifespan of photovoltaic systems, while minimizing environmental risks.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.