Enhancing Direction-of-Arrival Estimation with Multi-Task Learning.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-11-20 DOI:10.3390/s24227390
Simone Bianco, Luigi Celona, Paolo Crotti, Paolo Napoletano, Giovanni Petraglia, Pietro Vinetti
{"title":"Enhancing Direction-of-Arrival Estimation with Multi-Task Learning.","authors":"Simone Bianco, Luigi Celona, Paolo Crotti, Paolo Napoletano, Giovanni Petraglia, Pietro Vinetti","doi":"10.3390/s24227390","DOIUrl":null,"url":null,"abstract":"<p><p>There are numerous methods in the literature for Direction-of-Arrival (DOA) estimation, including both classical and machine learning-based approaches that jointly estimate the Number of Sources (NOS) and DOA. However, most of these methods do not fully leverage the potential synergies between these two tasks, which could yield valuable shared information. To address this limitation, in this article, we present a multi-task Convolutional Neural Network (CNN) capable of simultaneously estimating both the NOS and the DOA of the signal. Through experiments on simulated data, we demonstrate that our proposed model surpasses the performance of state-of-the-art methods, especially in challenging environments characterized by high noise levels and dynamic conditions.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 22","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24227390","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

There are numerous methods in the literature for Direction-of-Arrival (DOA) estimation, including both classical and machine learning-based approaches that jointly estimate the Number of Sources (NOS) and DOA. However, most of these methods do not fully leverage the potential synergies between these two tasks, which could yield valuable shared information. To address this limitation, in this article, we present a multi-task Convolutional Neural Network (CNN) capable of simultaneously estimating both the NOS and the DOA of the signal. Through experiments on simulated data, we demonstrate that our proposed model surpasses the performance of state-of-the-art methods, especially in challenging environments characterized by high noise levels and dynamic conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多任务学习增强到达方向估计。
文献中有许多到达方向(DOA)估计方法,包括传统方法和基于机器学习的方法,这些方法可联合估计信号源数量(NOS)和到达方向(DOA)。然而,这些方法大多没有充分利用这两项任务之间的潜在协同作用,而这可能会产生有价值的共享信息。为了解决这一局限性,我们在本文中提出了一种多任务卷积神经网络(CNN),它能够同时估计信号的 NOS 和 DOA。通过对模拟数据的实验,我们证明了我们提出的模型超越了最先进方法的性能,尤其是在具有高噪声水平和动态条件的挑战性环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Privacy-Preserving Synthetic Data Generation Method for IoT-Sensor Network IDS Using CTGAN. Energy Efficiency for 5G and Beyond 5G: Potential, Limitations, and Future Directions. Enhanced Fault Detection in Photovoltaic Panels Using CNN-Based Classification with PyQt5 Implementation. Adaptive Kernel Convolutional Stereo Matching Recurrent Network. Enhancing Direction-of-Arrival Estimation with Multi-Task Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1