Fabrication of disk ultramicroelectrode using nanoskiving method.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2024-11-01 DOI:10.1063/5.0228902
Yanquan Geng, Hainan Zhao, Yongda Yan, Zhuo Fang, Jiqiang Wang
{"title":"Fabrication of disk ultramicroelectrode using nanoskiving method.","authors":"Yanquan Geng, Hainan Zhao, Yongda Yan, Zhuo Fang, Jiqiang Wang","doi":"10.1063/5.0228902","DOIUrl":null,"url":null,"abstract":"<p><p>The detection time of the ultramicroelectrode can be reduced to nanoseconds when compared to the macroscopic electrode, enabling real-time monitoring of the instantaneous electrochemical behavior of the microstructure. Preparing ultramicroelectrode thus has drawn great attention recently. In the present study, a novel method for the preparation of disk ultramicroelectrodes with controllable electrode end sizes based on the nanoskiving method is proposed. The feature dimensions of the ultramicroelectrode can be controlled by the nanoskiving parameters. The electrochemical performance of the prepared ultramicroelectrode is evaluated in the solution system consisting of a 1 mM FcMeOH (ferrocenyl methanol) and 0.1 M KCl aqueous solution. The steady-state limit current deviation rate of the electrode is 7%, and it can work continuously for 600 s. Moreover, the electrode is integrated with micrometer precision scanning and positioning devices, which conduct electrochemical characterization of the micron structure array sample. The electrochemical image of the tin-doped indium oxide sample is measured successfully. The funding in this study provides a novel method to prepare ultramicroelectrodes. Importantly, high-precision electrochemical imaging equipment is established that can be used to measure electrochemical images.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0228902","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The detection time of the ultramicroelectrode can be reduced to nanoseconds when compared to the macroscopic electrode, enabling real-time monitoring of the instantaneous electrochemical behavior of the microstructure. Preparing ultramicroelectrode thus has drawn great attention recently. In the present study, a novel method for the preparation of disk ultramicroelectrodes with controllable electrode end sizes based on the nanoskiving method is proposed. The feature dimensions of the ultramicroelectrode can be controlled by the nanoskiving parameters. The electrochemical performance of the prepared ultramicroelectrode is evaluated in the solution system consisting of a 1 mM FcMeOH (ferrocenyl methanol) and 0.1 M KCl aqueous solution. The steady-state limit current deviation rate of the electrode is 7%, and it can work continuously for 600 s. Moreover, the electrode is integrated with micrometer precision scanning and positioning devices, which conduct electrochemical characterization of the micron structure array sample. The electrochemical image of the tin-doped indium oxide sample is measured successfully. The funding in this study provides a novel method to prepare ultramicroelectrodes. Importantly, high-precision electrochemical imaging equipment is established that can be used to measure electrochemical images.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纳米剥离法制造圆盘超微电极
与宏观电极相比,超微电极的检测时间可缩短至纳秒级,从而实现对微观结构瞬时电化学行为的实时监测。因此,超微电极的制备近年来备受关注。本研究提出了一种基于纳米剥离法制备电极端部尺寸可控的盘状超微电极的新方法。超微电极的特征尺寸可由纳米孔化参数控制。在由 1 mM FcMeOH(二茂铁甲醇)和 0.1 M KCl 水溶液组成的溶液体系中,对所制备超微电极的电化学性能进行了评估。该电极的稳态极限电流偏差率为 7%,可连续工作 600 秒。此外,该电极还集成了微米级精度的扫描和定位装置,可对微米结构阵列样品进行电化学表征。成功测量了掺锡氧化铟样品的电化学图像。本研究的资金为制备超微电极提供了一种新方法。重要的是,建立了可用于测量电化学图像的高精度电化学成像设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
A simple graphics processing unit-accelerated propagation routine for laser pulses in the strong-field regime. Analyzing the effects of reflections on optical diagnostics in the main chamber and divertor of WEST (invited). Application of tunneling magnetoresistance in electromagnetic tomography system construction. Combined Raman spectroscopy and electrical transport measurements in ultra-high vacuum down to 3.7 K. Design of a novel high-speed tensile method for testing the high strain rate tensile behavior of aluminum alloys.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1