{"title":"Simulation and Analysis of the Loading, Relaxation, and Recovery Behavior of Polyethylene and Its Pipes.","authors":"Furui Shi, P-Y Ben Jar","doi":"10.3390/polym16223153","DOIUrl":null,"url":null,"abstract":"<p><p>Spring-dashpot models have long been used to simulate the mechanical behavior of polymers, but their usefulness is limited because multiple model parameter values can reproduce the experimental data. In view of this limitation, this study explores the possibility of improving uniqueness of parameter values so that the parameters can be used to establish the relationship between deformation and microstructural changes. An approach was developed based on stress during the loading, relaxation, and recovery of polyethylene. In total, 1000 sets of parameter values were determined for fitting the data from the relaxation stages with a discrepancy within 0.08 MPa. Despite a small discrepancy, the 1000 sets showed a wide range of variation, but one model parameter, σv,L0, followed two distinct paths rather than random distribution. The five selected sets of parameter values with discrepancies below 0.04 MPa were found to be highly consistent, except for the characteristic relaxation time. Therefore, this study concludes that the uniqueness of model parameter values can be improved to characterize the mechanical behavior of polyethylene. This approach then determined the quasi-static stress of four polyethylene pipes, which showed that these pipes had very close quasi-static stress. This indicates that the uniqueness of the parameter values can be improved for the spring-dashpot model, enabling further study using spring-dashpot models to characterize polyethylene's microstructural changes during deformation.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 22","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16223153","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Spring-dashpot models have long been used to simulate the mechanical behavior of polymers, but their usefulness is limited because multiple model parameter values can reproduce the experimental data. In view of this limitation, this study explores the possibility of improving uniqueness of parameter values so that the parameters can be used to establish the relationship between deformation and microstructural changes. An approach was developed based on stress during the loading, relaxation, and recovery of polyethylene. In total, 1000 sets of parameter values were determined for fitting the data from the relaxation stages with a discrepancy within 0.08 MPa. Despite a small discrepancy, the 1000 sets showed a wide range of variation, but one model parameter, σv,L0, followed two distinct paths rather than random distribution. The five selected sets of parameter values with discrepancies below 0.04 MPa were found to be highly consistent, except for the characteristic relaxation time. Therefore, this study concludes that the uniqueness of model parameter values can be improved to characterize the mechanical behavior of polyethylene. This approach then determined the quasi-static stress of four polyethylene pipes, which showed that these pipes had very close quasi-static stress. This indicates that the uniqueness of the parameter values can be improved for the spring-dashpot model, enabling further study using spring-dashpot models to characterize polyethylene's microstructural changes during deformation.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.