Nada Mohamady Farouk Abdalsalam, Zihao Liang, Hafiza Kashaf Tariq, Abdulrahman Ibrahim, Rong Li, Xiaochun Wan, Dehong Yan
{"title":"Etomoxir Sodium Salt Promotes Imidazole Ketone Erastin-Induced Myeloid-Derived Suppressor Cell Ferroptosis and Enhances Cancer Therapy.","authors":"Nada Mohamady Farouk Abdalsalam, Zihao Liang, Hafiza Kashaf Tariq, Abdulrahman Ibrahim, Rong Li, Xiaochun Wan, Dehong Yan","doi":"10.3390/biology13110949","DOIUrl":null,"url":null,"abstract":"<p><p>Although ferroptosis inducers trigger ferroptotic tumor cells and immune cells in the tumor microenvironment (TME), imidazole ketone erastin (IKE)'s induction of ferroptosis shows no effect on tumor growth in immunocompetent tumor-bearing mice due to the presence of myeloid-derived suppressor cells (MDSCs). Treatment of the carnitine palmitoyltransferase 1a (CPT1A)-specific inhibitor decreases the immunosuppressive function of MDSCs and enhances ferroptotic inducer-initiated tumor cell ferroptosis. However, whether blocking CPT1A could enhance IKE-induced MDSC ferroptosis and thereby inhibit tumor growth is still unclear. Here, we report that a CPT1A-specific inhibitor, etomoxir sodium salt (Eto), and IKE combined treatment increased MDSC ferroptosis. Interestingly, the combination treatment of Eto and IKE blocked MDSCs' immunosuppressive function and accumulation by downregulating the expression of SLC7A11, GPX4, and ARG1 while promoting T-cell proliferation and infiltration into tumor tissues to enhance cancer therapy. These data provide a rationale for the combination therapy of a specific CPT1A inhibitor, Eto, with IKE in clinical settings.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 11","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592117/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13110949","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although ferroptosis inducers trigger ferroptotic tumor cells and immune cells in the tumor microenvironment (TME), imidazole ketone erastin (IKE)'s induction of ferroptosis shows no effect on tumor growth in immunocompetent tumor-bearing mice due to the presence of myeloid-derived suppressor cells (MDSCs). Treatment of the carnitine palmitoyltransferase 1a (CPT1A)-specific inhibitor decreases the immunosuppressive function of MDSCs and enhances ferroptotic inducer-initiated tumor cell ferroptosis. However, whether blocking CPT1A could enhance IKE-induced MDSC ferroptosis and thereby inhibit tumor growth is still unclear. Here, we report that a CPT1A-specific inhibitor, etomoxir sodium salt (Eto), and IKE combined treatment increased MDSC ferroptosis. Interestingly, the combination treatment of Eto and IKE blocked MDSCs' immunosuppressive function and accumulation by downregulating the expression of SLC7A11, GPX4, and ARG1 while promoting T-cell proliferation and infiltration into tumor tissues to enhance cancer therapy. These data provide a rationale for the combination therapy of a specific CPT1A inhibitor, Eto, with IKE in clinical settings.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.