A Multiscale Perspective on Chromatin Architecture through Polymer Physics.

IF 5.3 2区 医学 Q1 PHYSIOLOGY Physiology Pub Date : 2024-11-27 DOI:10.1152/physiol.00050.2024
Francesca Vercellone, Andrea M Chiariello, Andrea Esposito, Mattia Conte, Alex Abraham, Andrea Fontana, Florinda Di Pierno, Fabrizio Tafuri, Sougata Guha, Sumanta Kundu, Ciro Di Carluccio, Mario Nicodemi, Simona Bianco
{"title":"A Multiscale Perspective on Chromatin Architecture through Polymer Physics.","authors":"Francesca Vercellone, Andrea M Chiariello, Andrea Esposito, Mattia Conte, Alex Abraham, Andrea Fontana, Florinda Di Pierno, Fabrizio Tafuri, Sougata Guha, Sumanta Kundu, Ciro Di Carluccio, Mario Nicodemi, Simona Bianco","doi":"10.1152/physiol.00050.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The spatial organization of chromatin within the eukaryotic nucleus is critical in regulating key cellular functions, such as gene expression, and its disruption can lead to disease. Advances in experimental techniques, such as Hi-C and microscopy, have significantly enhanced our understanding of chromatin's intricate and dynamic architecture, revealing complex patterns of interaction at multiple scales. Along with experimental methods, physics-based computational models, including polymer phase separation and loop-extrusion mechanisms, have been developed to explain chromatin structure in a principled manner. Here, we illustrate genome-wide applications of these models, highlighting their ability to predict chromatin contacts across different scales and to spread light on the underlying molecular determinants. Additionally, we discuss how these models provide a framework for understanding alterations in chromosome folding associated with disease states, such as SARS-CoV-2 infection and pathogenic structural variants, providing valuable insights into the role of chromatin architecture in health and disease.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physiol.00050.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The spatial organization of chromatin within the eukaryotic nucleus is critical in regulating key cellular functions, such as gene expression, and its disruption can lead to disease. Advances in experimental techniques, such as Hi-C and microscopy, have significantly enhanced our understanding of chromatin's intricate and dynamic architecture, revealing complex patterns of interaction at multiple scales. Along with experimental methods, physics-based computational models, including polymer phase separation and loop-extrusion mechanisms, have been developed to explain chromatin structure in a principled manner. Here, we illustrate genome-wide applications of these models, highlighting their ability to predict chromatin contacts across different scales and to spread light on the underlying molecular determinants. Additionally, we discuss how these models provide a framework for understanding alterations in chromosome folding associated with disease states, such as SARS-CoV-2 infection and pathogenic structural variants, providing valuable insights into the role of chromatin architecture in health and disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过聚合物物理学透视染色质结构的多尺度视角
染色质在真核细胞核内的空间组织对于调控基因表达等关键细胞功能至关重要,其破坏可导致疾病。Hi-C和显微镜等实验技术的进步极大地增强了我们对染色质错综复杂的动态结构的了解,揭示了多种尺度上复杂的相互作用模式。除了实验方法外,我们还开发了基于物理学的计算模型,包括聚合物相分离和环挤出机制,以原则性的方式解释染色质结构。在这里,我们阐述了这些模型在全基因组范围内的应用,强调了它们预测不同尺度染色质接触的能力,以及揭示潜在分子决定因素的能力。此外,我们还讨论了这些模型如何为理解与疾病状态(如 SARS-CoV-2 感染和致病结构变异)相关的染色体折叠变化提供了一个框架,从而为了解染色质结构在健康和疾病中的作用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiology
Physiology 医学-生理学
CiteScore
14.50
自引率
0.00%
发文量
37
期刊介绍: Physiology journal features meticulously crafted review articles penned by esteemed leaders in their respective fields. These articles undergo rigorous peer review and showcase the forefront of cutting-edge advances across various domains of physiology. Our Editorial Board, comprised of distinguished leaders in the broad spectrum of physiology, convenes annually to deliberate and recommend pioneering topics for review articles, as well as select the most suitable scientists to author these articles. Join us in exploring the forefront of physiological research and innovation.
期刊最新文献
Charting the Molecular Terrain of Exercise: Energetics, Exerkines, and the Future of Multiomic Mapping. Buoyancy Regulation in Insects. Microtubule Reorganization and Quiescence: an Intertwined Relationship. mTORC1 and 2 Adrenergic Regulation and Function in Brown Adipose Tissue. Olfactory Development and Dysfunction: Involvement of Microglia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1