{"title":"Ripe Tomato Detection Algorithm Based on Improved YOLOv9.","authors":"Yan Wang, Qianjie Rong, Chunhua Hu","doi":"10.3390/plants13223253","DOIUrl":null,"url":null,"abstract":"<p><p>Recognizing ripe tomatoes is a crucial aspect of tomato picking. To ensure the accuracy of inspection results, You Only Look Once version 9 (YOLOv9) has been explored as a fruit detection algorithm. To tackle the challenge of identifying tomatoes and the low accuracy of small object detection in complex environments, we propose a ripe tomato recognition algorithm based on an enhanced YOLOv9-C model. After collecting tomato data, we used Mosaic for data augmentation, which improved model robustness and enriched experimental data. Improvements were made to the feature extraction and down-sampling modules, integrating HGBlock and SPD-ADown modules into the YOLOv9 model. These measures resulted in high detection performance with precision and recall rates of 97.2% and 92.3% in horizontal and vertical experimental comparisons, respectively. The module-integrated model improved accuracy and recall by 1.3% and 1.1%, respectively, and also reduced inference time by 1 ms compared to the original model. The inference time of this model was 14.7 ms, which is 16 ms better than the RetinaNet model. This model was tested accurately with mAP@0.5 (%) up to 98%, which is 9.6% higher than RetinaNet. Its increased speed and accuracy make it more suitable for practical applications. Overall, this model provides a reliable technique for recognizing ripe tomatoes during the picking process.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"13 22","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598171/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants13223253","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recognizing ripe tomatoes is a crucial aspect of tomato picking. To ensure the accuracy of inspection results, You Only Look Once version 9 (YOLOv9) has been explored as a fruit detection algorithm. To tackle the challenge of identifying tomatoes and the low accuracy of small object detection in complex environments, we propose a ripe tomato recognition algorithm based on an enhanced YOLOv9-C model. After collecting tomato data, we used Mosaic for data augmentation, which improved model robustness and enriched experimental data. Improvements were made to the feature extraction and down-sampling modules, integrating HGBlock and SPD-ADown modules into the YOLOv9 model. These measures resulted in high detection performance with precision and recall rates of 97.2% and 92.3% in horizontal and vertical experimental comparisons, respectively. The module-integrated model improved accuracy and recall by 1.3% and 1.1%, respectively, and also reduced inference time by 1 ms compared to the original model. The inference time of this model was 14.7 ms, which is 16 ms better than the RetinaNet model. This model was tested accurately with mAP@0.5 (%) up to 98%, which is 9.6% higher than RetinaNet. Its increased speed and accuracy make it more suitable for practical applications. Overall, this model provides a reliable technique for recognizing ripe tomatoes during the picking process.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.