Genome-wide chromosome architecture prediction reveals biophysical principles underlying gene structure.

IF 11.1 Q1 CELL BIOLOGY Cell genomics Pub Date : 2024-12-11 Epub Date: 2024-11-25 DOI:10.1016/j.xgen.2024.100698
Michael Chiang, Chris A Brackley, Catherine Naughton, Ryu-Suke Nozawa, Cleis Battaglia, Davide Marenduzzo, Nick Gilbert
{"title":"Genome-wide chromosome architecture prediction reveals biophysical principles underlying gene structure.","authors":"Michael Chiang, Chris A Brackley, Catherine Naughton, Ryu-Suke Nozawa, Cleis Battaglia, Davide Marenduzzo, Nick Gilbert","doi":"10.1016/j.xgen.2024.100698","DOIUrl":null,"url":null,"abstract":"<p><p>Classical observations suggest a connection between 3D gene structure and function, but testing this hypothesis has been challenging due to technical limitations. To explore this, we developed epigenetic highly predictive heteromorphic polymer (e-HiP-HoP), a model based on genome organization principles to predict the 3D structure of human chromatin. We defined a new 3D structural unit, a \"topos,\" which represents the regulatory landscape around gene promoters. Using GM12878 cells, we predicted the 3D structure of over 10,000 active gene topoi and stored them in the 3DGene database. Data mining revealed folding motifs and their link to Gene Ontology features. We computed a structural diversity score and identified influential nodes-chromatin sites that frequently interact with gene promoters, acting as key regulators. These nodes drive structural diversity and are tied to gene function. e-HiP-HoP provides a framework for modeling high-resolution chromatin structure and a mechanistic basis for chromatin contact networks that link 3D gene structure with function.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100698"},"PeriodicalIF":11.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Classical observations suggest a connection between 3D gene structure and function, but testing this hypothesis has been challenging due to technical limitations. To explore this, we developed epigenetic highly predictive heteromorphic polymer (e-HiP-HoP), a model based on genome organization principles to predict the 3D structure of human chromatin. We defined a new 3D structural unit, a "topos," which represents the regulatory landscape around gene promoters. Using GM12878 cells, we predicted the 3D structure of over 10,000 active gene topoi and stored them in the 3DGene database. Data mining revealed folding motifs and their link to Gene Ontology features. We computed a structural diversity score and identified influential nodes-chromatin sites that frequently interact with gene promoters, acting as key regulators. These nodes drive structural diversity and are tied to gene function. e-HiP-HoP provides a framework for modeling high-resolution chromatin structure and a mechanistic basis for chromatin contact networks that link 3D gene structure with function.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全基因组染色体结构预测揭示了基因结构的生物物理原理。
经典的观察结果表明,三维基因结构与功能之间存在联系,但由于技术限制,对这一假设的检验一直具有挑战性。为了探索这个问题,我们开发了表观遗传高度预测异形聚合物(e-HiP-HoP),这是一个基于基因组组织原理的模型,用于预测人类染色质的三维结构。我们定义了一种新的三维结构单元--"topos",它代表了基因启动子周围的调控景观。利用 GM12878 细胞,我们预测了 10,000 多个活跃基因拓扑的三维结构,并将其存储在 3DGene 数据库中。数据挖掘揭示了折叠图案及其与基因本体特征的联系。我们计算了结构多样性得分,并确定了有影响力的节点--经常与基因启动子相互作用的染色质位点,它们是关键的调节因子。e-HiP-HoP为高分辨率染色质结构建模提供了一个框架,也为染色质接触网络提供了一个机制基础,从而将三维基因结构与功能联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
Genetic mapping of serum metabolome to chronic diseases among Han Chinese. Single-cell DNA sequencing reveals pervasive positive selection throughout preleukemic evolution. Tracing human trait evolution through integrative genomics and temporal annotations. Chromosome-scale genome assembly reveals how repeat elements shape non-coding RNA landscapes active during newt limb regeneration. A multi-modal transformer for cell type-agnostic regulatory predictions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1