Actin Polymerization Status Regulates Tenocyte Homeostasis Through Myocardin-Related Transcription Factor-A.

Valerie C West, Kaelyn E Owen, Kameron L Inguito, Karl Matthew M Ebron, Tori N Reiner, Chloe E Mirack, Christian H Le, Rita de Cassia Marqueti, Steven Snipes, Rouhollah Mousavizadeh, Rylee E King, Dawn M Elliott, Justin Parreno
{"title":"Actin Polymerization Status Regulates Tenocyte Homeostasis Through Myocardin-Related Transcription Factor-A.","authors":"Valerie C West, Kaelyn E Owen, Kameron L Inguito, Karl Matthew M Ebron, Tori N Reiner, Chloe E Mirack, Christian H Le, Rita de Cassia Marqueti, Steven Snipes, Rouhollah Mousavizadeh, Rylee E King, Dawn M Elliott, Justin Parreno","doi":"10.1002/cm.21962","DOIUrl":null,"url":null,"abstract":"<p><p>The actin cytoskeleton is a potent regulator of tenocyte homeostasis. However, the mechanisms by which actin regulates tendon homeostasis are not entirely known. This study examined the regulation of tenocyte molecule expression by actin polymerization via the globular (G-) actin-binding transcription factor, myocardin-related transcription factor-a (MRTF). We determined that decreasing the proportion of G-actin in tenocytes by treatment with TGFβ1 increases nuclear MRTF. These alterations in actin polymerization and MRTF localization coincided with favorable alterations to tenocyte gene expression. In contrast, latrunculin A increases the proportion of G-actin in tenocytes and reduces nuclear MRTF, causing cells to acquire a tendinosis-like phenotype. To parse out the effects of F-actin depolymerization from regulation by MRTF, we treated tenocytes with cytochalasin D. Exposure of cells to cytochalasin D increases the proportion of G-actin in tenocytes. However, as compared to latrunculin A, cytochalasin D has a differential effect on MRTF localization by increasing nuclear MRTF. This led to an opposing effect on the regulation of a subset of genes. The differential regulation of genes by latrunculin A and cytochalasin D suggests that actin signals through MRTF to regulate a specific subset of genes. By targeting the deactivation of MRTF through the inhibitor CCG1423, we verify that MRTF regulates Type I Collagen, Tenascin C, Scleraxis, and α-smooth muscle actin in tenocytes. Actin polymerization status is a potent regulator of tenocyte homeostasis through the modulation of several downstream pathways, including MRTF. Understanding the regulation of tenocyte homeostasis by actin may lead to new therapeutic interventions against tendinopathies, such as tendinosis.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cm.21962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The actin cytoskeleton is a potent regulator of tenocyte homeostasis. However, the mechanisms by which actin regulates tendon homeostasis are not entirely known. This study examined the regulation of tenocyte molecule expression by actin polymerization via the globular (G-) actin-binding transcription factor, myocardin-related transcription factor-a (MRTF). We determined that decreasing the proportion of G-actin in tenocytes by treatment with TGFβ1 increases nuclear MRTF. These alterations in actin polymerization and MRTF localization coincided with favorable alterations to tenocyte gene expression. In contrast, latrunculin A increases the proportion of G-actin in tenocytes and reduces nuclear MRTF, causing cells to acquire a tendinosis-like phenotype. To parse out the effects of F-actin depolymerization from regulation by MRTF, we treated tenocytes with cytochalasin D. Exposure of cells to cytochalasin D increases the proportion of G-actin in tenocytes. However, as compared to latrunculin A, cytochalasin D has a differential effect on MRTF localization by increasing nuclear MRTF. This led to an opposing effect on the regulation of a subset of genes. The differential regulation of genes by latrunculin A and cytochalasin D suggests that actin signals through MRTF to regulate a specific subset of genes. By targeting the deactivation of MRTF through the inhibitor CCG1423, we verify that MRTF regulates Type I Collagen, Tenascin C, Scleraxis, and α-smooth muscle actin in tenocytes. Actin polymerization status is a potent regulator of tenocyte homeostasis through the modulation of several downstream pathways, including MRTF. Understanding the regulation of tenocyte homeostasis by actin may lead to new therapeutic interventions against tendinopathies, such as tendinosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肌动蛋白聚合状态通过肌动蛋白相关转录因子-A调控腱细胞稳态
肌动蛋白细胞骨架是腱细胞稳态的有力调节器。然而,肌动蛋白调节肌腱稳态的机制尚不完全清楚。本研究考察了肌动蛋白聚合通过球状(G-)肌动蛋白结合转录因子肌钙蛋白相关转录因子-a(MRTF)对腱细胞分子表达的调控。我们发现,用 TGFβ1 处理腱细胞后,G-肌动蛋白的比例降低,核 MRTF 增加。肌动蛋白聚合和 MRTF 定位的这些变化与腱细胞基因表达的有利变化相吻合。相反,Latrunculin A会增加腱细胞中G-肌动蛋白的比例并减少核MRTF,使细胞获得类似腱鞘炎的表型。为了将F-肌动蛋白解聚的影响与MRTF的调控区分开来,我们用细胞松弛素D处理了腱细胞。然而,与拉曲菌素 A 相比,细胞松弛素 D 通过增加核 MRTF 对 MRTF 定位有不同的影响。这导致对一部分基因的调控产生了相反的效果。latrunculin A和细胞松弛素D对基因的不同调控表明,肌动蛋白通过MRTF发出信号来调控特定的基因子集。通过抑制剂CCG1423靶向去激活MRTF,我们验证了MRTF调控腱细胞中的I型胶原、Tenascin C、Scleraxis和α-平滑肌肌动蛋白。肌动蛋白聚合状态通过调节包括 MRTF 在内的几种下游通路,成为腱细胞稳态的有力调控因子。了解肌动蛋白对腱鞘细胞稳态的调控,可能有助于针对腱鞘炎等腱鞘病症采取新的治疗干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Actin Polymerization Status Regulates Tenocyte Homeostasis Through Myocardin-Related Transcription Factor-A. Actin Isovariant ACT2-Mediated Cellular Auxin Homeostasis Regulates Lateral Root Organogenesis in Arabidopsis thaliana. Analyses of Off-Target Effects on Cardiac and Skeletal Muscles by Berberine, a Drug Used to Treat Cancers and Induce Weight Loss. Alteration of Cytoskeletal Proteins Leads to Retinal Degeneration in Drosophila. SEC-SAXS/MC Ensemble Structural Studies of the Microtubule Binding Protein Cdt1 Show Monomeric, Folded-Over Conformations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1