Knock-in of a 3' UTR Stop Cassette into the Wnt4 locus increases mRNA expression and leads to ovarian cyst formation.

Nsrein Ali, Qi Xu, Renata Prunskaite-Hyyryläinen, Jingdong Shan, Seppo J Vainio
{"title":"Knock-in of a <i>3' UTR</i> Stop Cassette into the <i>Wnt4</i> locus increases mRNA expression and leads to ovarian cyst formation.","authors":"Nsrein Ali, Qi Xu, Renata Prunskaite-Hyyryläinen, Jingdong Shan, Seppo J Vainio","doi":"10.1387/ijdb.230211na","DOIUrl":null,"url":null,"abstract":"<p><p>Wnt4 signaling is critical for mammalian female sex determination, in female reproductive organ development, in follicular and oocyte maturation, and in steroid hormone production. When Wnt4 function is impaired, female embryos undergo partial female to male sex-reversal. This phenotype is associated with the expression of a set of somatic genes that are typical for the male differentiation pathways such as those of the Leydig cells. Given the roles of the 3`untranslated region (<i>3`UTR</i>) in control of gene expression, we addressed whether a knock-in of a stop cassette to 3`END of the <i>Wnt4</i> gene would impact female reproductive system development or function. The <i>3`UTR<sup>stop</sup></i> cassette indeed affected <i>Wnt4</i> gene expression <i>in vivo</i> so that the respective mRNA was upregulated in the ovaries of a three month-old female. The homozygous <i>Wnt4 3`UTR<sup>stop</sup></i> mice were noted to be leaner than their wild type (WT) littermate controls. Analysis of the ovarian follicular count at the age of three months revealed increased pre-antral but reduced ovarian corpus luteum follicular counts. Furthermore, two out of five of the homozygous female <i>Wnt4 3`UTR<sup>stop</sup></i> mice had ovarian cysts, not noted in WT controls. RT-qPCR and <i>in situ</i> hybridization analysis depicted changes in the expression of a panel of genes which encode enzymes that mediate the synthesis of female steroid hormones or their receptors due to the <i>Wnt4 3`UTR<sup>stop</sup></i> knock-in. Thus, female mice which had the homozygous construct exhibited elevated ovarian <i>Wnt4</i> mRNA expression and the corresponding knock-in was associated with changes in ovarian development and folliculogenesis. Our data reinforce the conclusion that deregulated <i>Wnt4</i> expression impacts female sex organogenesis, ovary development and function, and that the <i>Wnt4 3`UTR<sup>stop</sup></i> knock-in mouse provides a model to explore in more detail the roles of Wnt4 signaling in the process.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International journal of developmental biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1387/ijdb.230211na","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wnt4 signaling is critical for mammalian female sex determination, in female reproductive organ development, in follicular and oocyte maturation, and in steroid hormone production. When Wnt4 function is impaired, female embryos undergo partial female to male sex-reversal. This phenotype is associated with the expression of a set of somatic genes that are typical for the male differentiation pathways such as those of the Leydig cells. Given the roles of the 3`untranslated region (3`UTR) in control of gene expression, we addressed whether a knock-in of a stop cassette to 3`END of the Wnt4 gene would impact female reproductive system development or function. The 3`UTRstop cassette indeed affected Wnt4 gene expression in vivo so that the respective mRNA was upregulated in the ovaries of a three month-old female. The homozygous Wnt4 3`UTRstop mice were noted to be leaner than their wild type (WT) littermate controls. Analysis of the ovarian follicular count at the age of three months revealed increased pre-antral but reduced ovarian corpus luteum follicular counts. Furthermore, two out of five of the homozygous female Wnt4 3`UTRstop mice had ovarian cysts, not noted in WT controls. RT-qPCR and in situ hybridization analysis depicted changes in the expression of a panel of genes which encode enzymes that mediate the synthesis of female steroid hormones or their receptors due to the Wnt4 3`UTRstop knock-in. Thus, female mice which had the homozygous construct exhibited elevated ovarian Wnt4 mRNA expression and the corresponding knock-in was associated with changes in ovarian development and folliculogenesis. Our data reinforce the conclusion that deregulated Wnt4 expression impacts female sex organogenesis, ovary development and function, and that the Wnt4 3`UTRstop knock-in mouse provides a model to explore in more detail the roles of Wnt4 signaling in the process.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
敲入 Wnt4 基因座的 3' UTR 终止盒可增加 mRNA 的表达并导致卵巢囊肿的形成。
Wnt4 信号对哺乳动物的雌性性别决定、雌性生殖器官发育、卵泡和卵母细胞成熟以及类固醇激素分泌至关重要。当 Wnt4 功能受损时,雌性胚胎会发生部分雌性到雄性的性别逆转。这种表型与一系列体细胞基因的表达有关,这些基因是典型的雄性分化途径,如Leydig细胞的基因。鉴于3`非翻译区(3`UTR)在控制基因表达方面的作用,我们研究了在Wnt4基因的3`END敲入终止盒是否会影响女性生殖系统的发育或功能。3`UTR终止盒确实影响了Wnt4基因在体内的表达,从而使相应的mRNA在三个月大的雌性卵巢中上调。同卵Wnt4 3`UTRstop小鼠比野生型(WT)同卵对照小鼠瘦小。对三个月大的卵巢卵泡数的分析表明,卵巢前黄体卵泡数增加,但卵巢黄体卵泡数减少。此外,在五只同源Wnt4 3`UTRstop雌性小鼠中,有两只出现了卵巢囊肿,而WT对照组则没有这种现象。RT-qPCR 和原位杂交分析显示,由于 Wnt4 3`UTRstop 基因敲入,一组编码介导雌性类固醇激素或其受体合成的酶的基因的表达发生了变化。因此,同源构建的雌性小鼠卵巢Wnt4 mRNA表达升高,相应的基因敲入与卵巢发育和卵泡生成的变化有关。我们的数据进一步证实了Wnt4表达失调会影响雌性器官的发生、卵巢的发育和功能,而Wnt4 3`UTRstop基因敲入小鼠为更详细地探讨Wnt4信号在这一过程中的作用提供了一个模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knock-in of a 3' UTR Stop Cassette into the Wnt4 locus increases mRNA expression and leads to ovarian cyst formation. Epigenetic and transcriptional regulation of neuron phenotype. Histological characterisation of the horn bud region in 58 day old bovine fetuses. Genetic targeting of lymphatic endothelial cells in mice: current strategies and future perspectives. Origin and Development of Interstitial Cells of Cajal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1