Muhammad Faisal, Afshan Mehreen, Deli Hays, Faiza Yaseen, Yujun Liang
The axolotl, a legendary creature with the potential to regenerate complex body parts, is positioned as a powerful model organism due to its extraordinary regenerative capabilities. Axolotl can undergo successful regeneration of multiple structures, providing us with the opportunity to understand the factors that exhibit altered activity between regenerative and non-regenerative animals. This comprehensive review will explore the mysteries of axolotl regeneration, from the initial cellular triggers to the intricate signaling cascades that guide this complex process. We will delve deeply into the multifaceted interplay of genes and factors, highlighting the key role of signaling pathways and the influence of epigenetic modifications (such as DNA methylation, histone modification, and miRNA regulation) during regeneration. Furthermore, we will discuss how axolotls defy the odds by showing remarkable resistance to cancer, offering insights into potential therapeutic strategies. However, that is not the end; we will also highlight how age might affect the regenerative power of this creature. We hope this review will help navigate the awe-inspiring realm of axolotl regeneration, advance our understanding of regenerative biology, and chart pathways for future investigations aimed at uncovering new therapeutic approaches.
{"title":"The Genetic Odyssey of Axolotl Regeneration: Insights and Innovations.","authors":"Muhammad Faisal, Afshan Mehreen, Deli Hays, Faiza Yaseen, Yujun Liang","doi":"10.1387/ijdb.240111yl","DOIUrl":"https://doi.org/10.1387/ijdb.240111yl","url":null,"abstract":"<p><p>The axolotl, a legendary creature with the potential to regenerate complex body parts, is positioned as a powerful model organism due to its extraordinary regenerative capabilities. Axolotl can undergo successful regeneration of multiple structures, providing us with the opportunity to understand the factors that exhibit altered activity between regenerative and non-regenerative animals. This comprehensive review will explore the mysteries of axolotl regeneration, from the initial cellular triggers to the intricate signaling cascades that guide this complex process. We will delve deeply into the multifaceted interplay of genes and factors, highlighting the key role of signaling pathways and the influence of epigenetic modifications (such as DNA methylation, histone modification, and miRNA regulation) during regeneration. Furthermore, we will discuss how axolotls defy the odds by showing remarkable resistance to cancer, offering insights into potential therapeutic strategies. However, that is not the end; we will also highlight how age might affect the regenerative power of this creature. We hope this review will help navigate the awe-inspiring realm of axolotl regeneration, advance our understanding of regenerative biology, and chart pathways for future investigations aimed at uncovering new therapeutic approaches.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"68 3","pages":"103-116"},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The neural crest (NC) is an embryonic cell population with high migratory capacity. It contributes to forming several organs and tissues, such as the craniofacial skeleton and the peripheral nervous system of vertebrates. Both pre-migratory and post-migratory NC cells are plastic, adopting multiple differentiation paths by responding to different inductive environmental signals. Cephalic neural crest cells (CNCCs) give rise to most of the cartilage and bone tissues in the head. On the other hand, the mesenchymal potential of trunk neural crest cells (TNCCs) is sparsely detected in some animal groups. The mesenchymal potential of TNCCs can be unveiled through specific environmental conditions of NC cultures. In this study, we present evidence that FGF8 treatment can foster increased chondrogenic differentiation of TNCCs, particularly during treatment at the migratory stage. Additionally, we conducted a transcriptomic analysis of TNCCs in the post-migratory stage, noting that exogenous FGF8 signaling can sustain multipotent status and, possibly, at the same time, a pro-cartilage regulatory gene network. Our results provide a more comprehensive understanding of the mechanisms underlying chondrogenic differentiation from TNCCs.
{"title":"Fibroblast Growth Factor 8 enhances the chondrogenesis of trunk neural crest cells: a possible gene regulatory network.","authors":"Raphaella Josino, Saloe Bispo, Bernardo Bonilauri, Bruno Dallagiovanna, Giordano Wosgrau Calloni","doi":"10.1387/ijdb.240189gc","DOIUrl":"https://doi.org/10.1387/ijdb.240189gc","url":null,"abstract":"<p><p>The neural crest (NC) is an embryonic cell population with high migratory capacity. It contributes to forming several organs and tissues, such as the craniofacial skeleton and the peripheral nervous system of vertebrates. Both pre-migratory and post-migratory NC cells are plastic, adopting multiple differentiation paths by responding to different inductive environmental signals. Cephalic neural crest cells (CNCCs) give rise to most of the cartilage and bone tissues in the head. On the other hand, the mesenchymal potential of trunk neural crest cells (TNCCs) is sparsely detected in some animal groups. The mesenchymal potential of TNCCs can be unveiled through specific environmental conditions of NC cultures. In this study, we present evidence that FGF8 treatment can foster increased chondrogenic differentiation of TNCCs, particularly during treatment at the migratory stage. Additionally, we conducted a transcriptomic analysis of TNCCs in the post-migratory stage, noting that exogenous FGF8 signaling can sustain multipotent status and, possibly, at the same time, a pro-cartilage regulatory gene network. Our results provide a more comprehensive understanding of the mechanisms underlying chondrogenic differentiation from TNCCs.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"68 3","pages":"135-143"},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katarzyna Krawczyk, Magdalena Oślislok, Anna Gałązkiewicz, Marcin Szpila, Marek Maleszewski
Aggregates of two mouse embryos produce viable offspring of normal size, indicating that there are mechanisms in the embryo that can downregulate their size to the size of the corresponding normal (single) embryos. Very little is known about the mechanisms controlling compensation for increased preimplantation size. Also, it is still elusive when exactly during development chimeric embryos regulate their size. Here, we determined the exact period of size regulation in chimeras. Using a chimeric embryo produced by aggregating two 8-cell stage embryos, we revealed that size regulation initiates shortly after implantation (E5.5) and ends with the start of gastrulation (E7.5). Importantly, processes that regulate cell number in chimeric embryos do not disturb morphogenesis, so that the formation of the proamniotic cavity occurs in parallel with size regulation.
{"title":"Cell number regulation occurs during the pre-gastrulation period of postimplantation development in double chimeric mouse embryos.","authors":"Katarzyna Krawczyk, Magdalena Oślislok, Anna Gałązkiewicz, Marcin Szpila, Marek Maleszewski","doi":"10.1387/ijdb.240138mm","DOIUrl":"https://doi.org/10.1387/ijdb.240138mm","url":null,"abstract":"<p><p>Aggregates of two mouse embryos produce viable offspring of normal size, indicating that there are mechanisms in the embryo that can downregulate their size to the size of the corresponding normal (single) embryos. Very little is known about the mechanisms controlling compensation for increased preimplantation size. Also, it is still elusive when exactly during development chimeric embryos regulate their size. Here, we determined the exact period of size regulation in chimeras. Using a chimeric embryo produced by aggregating two 8-cell stage embryos, we revealed that size regulation initiates shortly after implantation (E5.5) and ends with the start of gastrulation (E7.5). Importantly, processes that regulate cell number in chimeric embryos do not disturb morphogenesis, so that the formation of the proamniotic cavity occurs in parallel with size regulation.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"68 3","pages":"127-133"},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nsrein Ali, Qi Xu, Renata Prunskaite-Hyyryläinen, Jingdong Shan, Seppo J Vainio
Wnt4 signaling is critical for mammalian female sex determination, in female reproductive organ development, in follicular and oocyte maturation, and in steroid hormone production. When Wnt4 function is impaired, female embryos undergo partial female to male sex-reversal. This phenotype is associated with the expression of a set of somatic genes that are typical for the male differentiation pathways such as those of the Leydig cells. Given the roles of the 3`untranslated region (3`UTR) in control of gene expression, we addressed whether a knock-in of a stop cassette to 3`END of the Wnt4 gene would impact female reproductive system development or function. The 3`UTRstop cassette indeed affected Wnt4 gene expression in vivo so that the respective mRNA was upregulated in the ovaries of a three month-old female. The homozygous Wnt4 3`UTRstop mice were noted to be leaner than their wild type (WT) littermate controls. Analysis of the ovarian follicular count at the age of three months revealed increased pre-antral but reduced ovarian corpus luteum follicular counts. Furthermore, two out of five of the homozygous female Wnt4 3`UTRstop mice had ovarian cysts, not noted in WT controls. RT-qPCR and in situ hybridization analysis depicted changes in the expression of a panel of genes which encode enzymes that mediate the synthesis of female steroid hormones or their receptors due to the Wnt4 3`UTRstop knock-in. Thus, female mice which had the homozygous construct exhibited elevated ovarian Wnt4 mRNA expression and the corresponding knock-in was associated with changes in ovarian development and folliculogenesis. Our data reinforce the conclusion that deregulated Wnt4 expression impacts female sex organogenesis, ovary development and function, and that the Wnt4 3`UTRstop knock-in mouse provides a model to explore in more detail the roles of Wnt4 signaling in the process.
{"title":"Knock-in of a <i>3' UTR</i> Stop Cassette into the <i>Wnt4</i> locus increases mRNA expression and leads to ovarian cyst formation.","authors":"Nsrein Ali, Qi Xu, Renata Prunskaite-Hyyryläinen, Jingdong Shan, Seppo J Vainio","doi":"10.1387/ijdb.230211na","DOIUrl":"https://doi.org/10.1387/ijdb.230211na","url":null,"abstract":"<p><p>Wnt4 signaling is critical for mammalian female sex determination, in female reproductive organ development, in follicular and oocyte maturation, and in steroid hormone production. When Wnt4 function is impaired, female embryos undergo partial female to male sex-reversal. This phenotype is associated with the expression of a set of somatic genes that are typical for the male differentiation pathways such as those of the Leydig cells. Given the roles of the 3`untranslated region (<i>3`UTR</i>) in control of gene expression, we addressed whether a knock-in of a stop cassette to 3`END of the <i>Wnt4</i> gene would impact female reproductive system development or function. The <i>3`UTR<sup>stop</sup></i> cassette indeed affected <i>Wnt4</i> gene expression <i>in vivo</i> so that the respective mRNA was upregulated in the ovaries of a three month-old female. The homozygous <i>Wnt4 3`UTR<sup>stop</sup></i> mice were noted to be leaner than their wild type (WT) littermate controls. Analysis of the ovarian follicular count at the age of three months revealed increased pre-antral but reduced ovarian corpus luteum follicular counts. Furthermore, two out of five of the homozygous female <i>Wnt4 3`UTR<sup>stop</sup></i> mice had ovarian cysts, not noted in WT controls. RT-qPCR and <i>in situ</i> hybridization analysis depicted changes in the expression of a panel of genes which encode enzymes that mediate the synthesis of female steroid hormones or their receptors due to the <i>Wnt4 3`UTR<sup>stop</sup></i> knock-in. Thus, female mice which had the homozygous construct exhibited elevated ovarian <i>Wnt4</i> mRNA expression and the corresponding knock-in was associated with changes in ovarian development and folliculogenesis. Our data reinforce the conclusion that deregulated <i>Wnt4</i> expression impacts female sex organogenesis, ovary development and function, and that the <i>Wnt4 3`UTR<sup>stop</sup></i> knock-in mouse provides a model to explore in more detail the roles of Wnt4 signaling in the process.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142735487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding the structure and function of cells is central to cell biology and physiology. The ability to control cell function may benefit biomedicine, such as cell-replacement therapy or regeneration. If structure defines function and cells are composed of water, lipids, small metabolites, nucleic acids, and proteins, of which the latter are largely encoded by the DNA present in the same cell, then one may assume that the cell types and variation in cellular phenotypes are shaped by differential gene expression. Cells of the same cell type maintain a similar composition. In this review, I will discuss the epigenetic and transcription regulation mechanisms guiding cell fate- specific gene expression in developing neural cells. Differentiation involves processes of cell-fate selection, commitment and maturation, which are not necessarily coupled.
了解细胞的结构和功能是细胞生物学和生理学的核心。控制细胞功能的能力可能有益于生物医学,如细胞替代疗法或再生。如果说结构决定功能,细胞由水、脂质、小分子代谢物、核酸和蛋白质组成,而后者主要由存在于同一细胞中的 DNA 编码,那么我们可以认为,细胞类型和细胞表型的变化是由不同的基因表达形成的。同一细胞类型的细胞保持着相似的组成。在这篇综述中,我将讨论在发育中的神经细胞中引导细胞命运特异性基因表达的表观遗传和转录调控机制。分化涉及细胞命运选择、承诺和成熟过程,这些过程并不一定相互关联。
{"title":"Epigenetic and transcriptional regulation of neuron phenotype.","authors":"Kaia Achim","doi":"10.1387/ijdb.230204ka","DOIUrl":"https://doi.org/10.1387/ijdb.230204ka","url":null,"abstract":"<p><p>Understanding the structure and function of cells is central to cell biology and physiology. The ability to control cell function may benefit biomedicine, such as cell-replacement therapy or regeneration. If structure defines function and cells are composed of water, lipids, small metabolites, nucleic acids, and proteins, of which the latter are largely encoded by the DNA present in the same cell, then one may assume that the cell types and variation in cellular phenotypes are shaped by differential gene expression. Cells of the same cell type maintain a similar composition. In this review, I will discuss the epigenetic and transcription regulation mechanisms guiding cell fate- specific gene expression in developing neural cells. Differentiation involves processes of cell-fate selection, commitment and maturation, which are not necessarily coupled.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johanna E Aldersey, Tong Chen, Kiro Petrovski, John L Williams, Cynthia D K Bottema
The presence of horns in domestic ruminants, such as cattle, sheep and goats, has financial and welfare implications. The genetic interactions that lead to horn development are not known. Hornless, or polled, cattle occur naturally. The known causative DNA variants (Celtic, Friesian, Mongolian and Guarani) are in intergenic regions on bovine chromosome 1, but their functions are not known. It is thought that horns may be derived from cranial neural crest stem cells and the POLLED variants disrupt the migration or proliferation of these cells. Relaxin family peptide receptor 2 (RXFP2) is more highly expressed in developing horns in cattle compared to nearby skin and has been shown to play a role in horn development in sheep. However, the role of RXFP2 in horn formation is not understood. Histological analyses of cranial tissues from homozygous horned and polled cattle fetuses at day 58 of development was carried out to determine the differences in the structure of the horn bud region. Condensed cells were only observed in the horn bud mesenchyme of horned fetuses and could be the progenitor horn cells. The distribution of neural crest markers (SOX10 and NGFR) and RXFP2 between horned and polled tissues by immunohistochemistry was also analysed. However, SOX10 and NGFR were not detected in the condensed cells, and therefore, these cells are either not derived from the neural crest, or have differentiated and no longer express neural crest markers. SOX10 and NGFR were detected in the peripheral nerves, while RXFP2 was detected in peripheral nerves and in the horn bud epidermis. Previous research has shown that RXFP2 variants are associated with horn phenotypes in cattle an sheep. Therefore, the RXFP2 variants may affect the development of the epidermis or peripheral nerves in the horn bud.
{"title":"Histological characterisation of the horn bud region in 58 day old bovine fetuses.","authors":"Johanna E Aldersey, Tong Chen, Kiro Petrovski, John L Williams, Cynthia D K Bottema","doi":"10.1387/ijdb.240040ja","DOIUrl":"10.1387/ijdb.240040ja","url":null,"abstract":"<p><p>The presence of horns in domestic ruminants, such as cattle, sheep and goats, has financial and welfare implications. The genetic interactions that lead to horn development are not known. Hornless, or polled, cattle occur naturally. The known causative DNA variants (Celtic, Friesian, Mongolian and Guarani) are in intergenic regions on bovine chromosome 1, but their functions are not known. It is thought that horns may be derived from cranial neural crest stem cells and the POLLED variants disrupt the migration or proliferation of these cells. Relaxin family peptide receptor 2 (<i>RXFP2</i>) is more highly expressed in developing horns in cattle compared to nearby skin and has been shown to play a role in horn development in sheep. However, the role of RXFP2 in horn formation is not understood. Histological analyses of cranial tissues from homozygous horned and polled cattle fetuses at day 58 of development was carried out to determine the differences in the structure of the horn bud region. Condensed cells were only observed in the horn bud mesenchyme of horned fetuses and could be the progenitor horn cells. The distribution of neural crest markers (SOX10 and NGFR) and RXFP2 between horned and polled tissues by immunohistochemistry was also analysed. However, SOX10 and NGFR were not detected in the condensed cells, and therefore, these cells are either not derived from the neural crest, or have differentiated and no longer express neural crest markers. SOX10 and NGFR were detected in the peripheral nerves, while RXFP2 was detected in peripheral nerves and in the horn bud epidermis. Previous research has shown that RXFP2 variants are associated with horn phenotypes in cattle an sheep. Therefore, the RXFP2 variants may affect the development of the epidermis or peripheral nerves in the horn bud.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":"117-126"},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lymphatic vessels within different organs have diverse developmental origins, depend on different growth factor signaling pathways for their development and maintenance, and display notable tissue-specific adaptations that contribute to their roles in normal physiology and in various diseases. Functional studies on the lymphatic vasculature rely extensively on the use of mouse models that allow selective gene targeting of lymphatic endothelial cells (LECs). Here, we discuss LEC diversity and provide an overview of some of the commonly used LEC-specific inducible Cre lines and induction protocols, outlining essential experimental parameters and their implications. We describe optimized treatment regimens for embryonic, postnatal and adult LECs, efficiently targeting organs that are commonly studied in lymphatic vascular research, such as the mesentery and skin. We further highlight the anticipated outcomes and limitations associated with each induction scheme and mouse line. The proposed protocols serve as recommendations for laboratories initiating studies involving targeting of the lymphatic vasculature, and aim to promote uniformity in lineage tracing and functional studies within the lymphatic vascular field.
{"title":"Genetic targeting of lymphatic endothelial cells in mice: current strategies and future perspectives.","authors":"Hans Schoofs, Taija Mäkinen","doi":"10.1387/ijdb.230215tm","DOIUrl":"https://doi.org/10.1387/ijdb.230215tm","url":null,"abstract":"<p><p>Lymphatic vessels within different organs have diverse developmental origins, depend on different growth factor signaling pathways for their development and maintenance, and display notable tissue-specific adaptations that contribute to their roles in normal physiology and in various diseases. Functional studies on the lymphatic vasculature rely extensively on the use of mouse models that allow selective gene targeting of lymphatic endothelial cells (LECs). Here, we discuss LEC diversity and provide an overview of some of the commonly used LEC-specific inducible Cre lines and induction protocols, outlining essential experimental parameters and their implications. We describe optimized treatment regimens for embryonic, postnatal and adult LECs, efficiently targeting organs that are commonly studied in lymphatic vascular research, such as the mesentery and skin. We further highlight the anticipated outcomes and limitations associated with each induction scheme and mouse line. The proposed protocols serve as recommendations for laboratories initiating studies involving targeting of the lymphatic vasculature, and aim to promote uniformity in lineage tracing and functional studies within the lymphatic vascular field.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The digestive tract is a series of organs with specific functions and specialized anatomy. Each organ is organized similarly with concentric layers of epithelial, connective, smooth muscle, and neural tissues. Interstitial cells of Cajal (ICC) are distributed in smooth muscle layers and contribute to the organization of repetitive and rhythmic smooth muscle contractions. Understanding ICC development is critical to understanding gastrointestinal motility patterns. Experiments determining ICC origin and development in mice, chicken, and humans are described, as well as what is known in the zebrafish. At least six types of ICC in the digestive tract have been described and ICC heterogeneity in adult tissues is reviewed. Factors required for ICC development and for maintenance of ICC subclasses are described. This review is suitable for those new to ICC development and physiology, especially those focused on using zebrafish and other model systems.
{"title":"Origin and Development of Interstitial Cells of Cajal.","authors":"Tara Sweet, Christeen M Abraham, Adam Rich","doi":"10.1387/ijdb.240057ar","DOIUrl":"10.1387/ijdb.240057ar","url":null,"abstract":"<p><p>The digestive tract is a series of organs with specific functions and specialized anatomy. Each organ is organized similarly with concentric layers of epithelial, connective, smooth muscle, and neural tissues. Interstitial cells of Cajal (ICC) are distributed in smooth muscle layers and contribute to the organization of repetitive and rhythmic smooth muscle contractions. Understanding ICC development is critical to understanding gastrointestinal motility patterns. Experiments determining ICC origin and development in mice, chicken, and humans are described, as well as what is known in the zebrafish. At least six types of ICC in the digestive tract have been described and ICC heterogeneity in adult tissues is reviewed. Factors required for ICC development and for maintenance of ICC subclasses are described. This review is suitable for those new to ICC development and physiology, especially those focused on using zebrafish and other model systems.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":"93-102"},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Davide Martini, Chiara De Cesari, Matteo Digregorio, Alessia Muscò, Guido Giudetti, Martina Giannaccini, Massimiliano Andreazzoli
The tRNA-histidine guanylyltransferase 1-like (THG1L), also known as induced in high glucose-1 (IHG-1), encodes for an essential mitochondria-associated protein highly conserved throughout evolution, that catalyses the 3'-5' addition of a guanine to the 5'-end of tRNA-histidine (tRNAHis). Previous data indicated that THG1L plays a crucial role in the regulation of mitochondrial biogenesis and dynamics, in ATP production, and is critically involved in the modulation of apoptosis, cell-cycle progression and survival, as well as in cellular stress responses and redox homeostasis. Dysregulations of THG1L expression play a central role in various pathologies, including nephropathies, and neurodevelopmental disorders often characterized by developmental delay and cerebellar ataxia. Despite the essential role of THG1L, little is known about its expression during vertebrate development. Herein, we examined the detailed spatio-temporal expression of this gene in the developing Xenopus laevis. Our results show that thg1l is maternally inherited and its temporal expression suggests a role during the earliest stages of embryogenesis. Spatially, thg1l mRNA localizes in the ectoderm and marginal zone mesoderm during early stages of development. Then, at tadpole stages, thg1l transcripts mostly localise in neural crests and their derivatives, somites, developing kidney and central nervous system, therefore largely coinciding with territories displaying intense energy metabolism during organogenesis in Xenopus.
{"title":"Expression analysis of <i>thg1l</i> during <i>Xenopus laevis</i> development.","authors":"Davide Martini, Chiara De Cesari, Matteo Digregorio, Alessia Muscò, Guido Giudetti, Martina Giannaccini, Massimiliano Andreazzoli","doi":"10.1387/ijdb.240033ma","DOIUrl":"10.1387/ijdb.240033ma","url":null,"abstract":"<p><p>The tRNA-histidine guanylyltransferase 1-like (<i>THG1L</i>), also known as induced in high glucose-1 (<i>IHG-1</i>), encodes for an essential mitochondria-associated protein highly conserved throughout evolution, that catalyses the 3'-5' addition of a guanine to the 5'-end of tRNA-histidine (tRNA<sup>His</sup>). Previous data indicated that THG1L plays a crucial role in the regulation of mitochondrial biogenesis and dynamics, in ATP production, and is critically involved in the modulation of apoptosis, cell-cycle progression and survival, as well as in cellular stress responses and redox homeostasis. Dysregulations of THG1L expression play a central role in various pathologies, including nephropathies, and neurodevelopmental disorders often characterized by developmental delay and cerebellar ataxia. Despite the essential role of THG1L, little is known about its expression during vertebrate development. Herein, we examined the detailed spatio-temporal expression of this gene in the developing <i>Xenopus laevis</i>. Our results show that <i>thg1l</i> is maternally inherited and its temporal expression suggests a role during the earliest stages of embryogenesis. Spatially, <i>thg1l</i> mRNA localizes in the ectoderm and marginal zone mesoderm during early stages of development. Then, at tadpole stages, <i>thg1l</i> transcripts mostly localise in neural crests and their derivatives, somites, developing kidney and central nervous system, therefore largely coinciding with territories displaying intense energy metabolism during organogenesis in <i>Xenopus</i>.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"68 2","pages":"85-91"},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Invertebrate and vertebrate species have many unusual cellular structures, such as long- or short-lived cell-in-cell structures and coenocytes. Coenocytes (often incorrectly described as syncytia) are multinuclear cells derived, unlike syncytia, not from the fusion of multiple cells but from multiple nuclear divisions without cytokinesis. An example of a somatic coenocyte is the coenocytic blastoderm in Drosophila. An astonishing property of coenocytes is the ability to differentiate the nuclei sharing a common cytoplasm into different subpopulations with different fate trajectories. An example of a germline coenocyte is the oogenic precursor of appendicularian tunicates, which shares many features with the somatic coenocyte of Drosophila. The germline coenocyte (coenocyst) is quite an unexpected structure because in most animals, including Drosophila, Xenopus, and mice, oogenesis proceeds within a group (cyst, nest) of sibling cells (cystocytes) connected by the intercellular bridges (ring canals, RCs) derived from multiple divisions with incomplete cytokinesis of a progenitor cell called the cystoblast. Here, I discuss the differences and similarities between cystocyte-based and coenocyst-based oogenesis, and the resemblance of coenocystic oogenesis to coenocytic somatic blastoderm in Drosophila. I also describe cell-in-cell structures that although not mechanistically, cytologically, or molecularly connected to somatic or germline coenocytes, are both unorthodox and intriguing cytological phenomena rarely covered by scientific literature.
{"title":"Coenocystic oogenesis - modification of or deviation from the germ cell cyst paradigm?","authors":"Malgorzata Kloc","doi":"10.1387/ijdb.240064mk","DOIUrl":"https://doi.org/10.1387/ijdb.240064mk","url":null,"abstract":"<p><p>Invertebrate and vertebrate species have many unusual cellular structures, such as long- or short-lived cell-in-cell structures and coenocytes. Coenocytes (often incorrectly described as syncytia) are multinuclear cells derived, unlike syncytia, not from the fusion of multiple cells but from multiple nuclear divisions without cytokinesis. An example of a somatic coenocyte is the coenocytic blastoderm in <i>Drosophila.</i> An astonishing property of coenocytes is the ability to differentiate the nuclei sharing a common cytoplasm into different subpopulations with different fate trajectories. An example of a germline coenocyte is the oogenic precursor of appendicularian tunicates, which shares many features with the somatic coenocyte of <i>Drosophila.</i> The germline coenocyte (coenocyst) is quite an unexpected structure because in most animals, including <i>Drosophila, Xenopus</i>, and mice, oogenesis proceeds within a group (cyst, nest) of sibling cells (cystocytes) connected by the intercellular bridges (ring canals, RCs) derived from multiple divisions with incomplete cytokinesis of a progenitor cell called the cystoblast. Here, I discuss the differences and similarities between cystocyte-based and coenocyst-based oogenesis, and the resemblance of coenocystic oogenesis to coenocytic somatic blastoderm in <i>Drosophila.</i> I also describe cell-in-cell structures that although not mechanistically, cytologically, or molecularly connected to somatic or germline coenocytes, are both unorthodox and intriguing cytological phenomena rarely covered by scientific literature.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"68 2","pages":"47-53"},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}