{"title":"Simultaneously enhanced strength and ductility of W-Cu bimetallic composites assisted by continuous cellular dislocation structure","authors":"Peng-Cheng Cai, Guo-Hua Zhang, Kuo-Chih Chou","doi":"10.1016/j.ijplas.2024.104188","DOIUrl":null,"url":null,"abstract":"W-Cu bimetallic composites are commonly employed in a wide range of critical fields due to their exceptional comprehensive performance. However, the weak interfacial bonding between two distinctive phases results in challenges such as easy deformation, poor mechanical performance, and short lifespan. In present work, by adopting thermo-mechanical processing (TMP) treatment, the W and Cu phases, connected by the nano-diffusion layer, underwent a cooperative deformation process. Meanwhile, the pre-existing nanoclusters anchored the accumulated dislocations during TMP, forming a unique continuous cellular dislocation structure (CC-D) with the nanoscale size of approximately 40 nm during the subsequent recovery annealing process. The CC-D dominated plastic deformation mechanism dynamically refined the grains by forming a multiscale network of stacking faults and deformation twins (SFs-DTs). Moreover, the slip transfer and twinning originating from the W/Cu interface were stimulated to alleviate interfacial stress accumulation. Thus, the ensuing strengthening and strain-hardening mechanisms maintained stable tensile flow, resulting in an exceptional strength-ductility combination (965 MPa, 14.8%). Moreover, the high density of twins within the Cu grains, with numerous coherent twin boundaries, reduced electron scattering and maintained a considerable electrical conductivity (30 %IACS) for the bimetallic composites.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"186 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2024.104188","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
W-Cu bimetallic composites are commonly employed in a wide range of critical fields due to their exceptional comprehensive performance. However, the weak interfacial bonding between two distinctive phases results in challenges such as easy deformation, poor mechanical performance, and short lifespan. In present work, by adopting thermo-mechanical processing (TMP) treatment, the W and Cu phases, connected by the nano-diffusion layer, underwent a cooperative deformation process. Meanwhile, the pre-existing nanoclusters anchored the accumulated dislocations during TMP, forming a unique continuous cellular dislocation structure (CC-D) with the nanoscale size of approximately 40 nm during the subsequent recovery annealing process. The CC-D dominated plastic deformation mechanism dynamically refined the grains by forming a multiscale network of stacking faults and deformation twins (SFs-DTs). Moreover, the slip transfer and twinning originating from the W/Cu interface were stimulated to alleviate interfacial stress accumulation. Thus, the ensuing strengthening and strain-hardening mechanisms maintained stable tensile flow, resulting in an exceptional strength-ductility combination (965 MPa, 14.8%). Moreover, the high density of twins within the Cu grains, with numerous coherent twin boundaries, reduced electron scattering and maintained a considerable electrical conductivity (30 %IACS) for the bimetallic composites.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.