Optimizing MoS2 Electrolyte-Gated Transistors: Stability, Performance, and Sensitivity Enhancements

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-11-27 DOI:10.1002/aelm.202400748
Steffen Rühl, Giovanni Ligorio, Max Heyl, Emil J. W. List-Kratochvil
{"title":"Optimizing MoS2 Electrolyte-Gated Transistors: Stability, Performance, and Sensitivity Enhancements","authors":"Steffen Rühl, Giovanni Ligorio, Max Heyl, Emil J. W. List-Kratochvil","doi":"10.1002/aelm.202400748","DOIUrl":null,"url":null,"abstract":"Electrolyte-gated field-effect transistors (EGFETs) based on transition metal dichalcogenides (TMDCs) are promising for biosensing applications due to their high transconductance (1.98 mS) and surface sensitivity enabling the detection of minute interfacial changes. However, their stability in aqueous poses significant challenges for long-term reliability. This work presents a study to anhance both the stability and performance of TMDC-based EGFETs. Initial devices showed promising performance but suffered significant instability during prolonged aqueos operation, limiting their biosensing applications. Postmortem analysis identified key areas for improvement leadinf to three major modifications: 1) a double-junction Ag/AgCl electrode to prevent ion leakage, 2) a protective resist layer to shields the monolayer, and 3) precise etching to confine the semiconductor material, reducing parasitic currents. These optimizations imroved the devices' transconductance and ensured stable operation over extended periods establishing TMDC-based EGFETs as viable candidates for reliable biosensing in aqueous environments.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"180 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400748","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolyte-gated field-effect transistors (EGFETs) based on transition metal dichalcogenides (TMDCs) are promising for biosensing applications due to their high transconductance (1.98 mS) and surface sensitivity enabling the detection of minute interfacial changes. However, their stability in aqueous poses significant challenges for long-term reliability. This work presents a study to anhance both the stability and performance of TMDC-based EGFETs. Initial devices showed promising performance but suffered significant instability during prolonged aqueos operation, limiting their biosensing applications. Postmortem analysis identified key areas for improvement leadinf to three major modifications: 1) a double-junction Ag/AgCl electrode to prevent ion leakage, 2) a protective resist layer to shields the monolayer, and 3) precise etching to confine the semiconductor material, reducing parasitic currents. These optimizations imroved the devices' transconductance and ensured stable operation over extended periods establishing TMDC-based EGFETs as viable candidates for reliable biosensing in aqueous environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化 MoS2 电解质门控晶体管:稳定性、性能和灵敏度的提高
基于过渡金属二卤化物(TMDCs)的电解质门控场效应晶体管(EGFETs)具有很高的跨导率(1.98 mS)和表面灵敏度,能够检测微小的界面变化,因此在生物传感应用中大有可为。然而,它们在水溶液中的稳定性对其长期可靠性提出了重大挑战。这项研究旨在提高基于 TMDC 的 EGFET 的稳定性和性能。最初的器件显示出良好的性能,但在长时间的水溶液操作过程中出现了严重的不稳定性,限制了其生物传感应用。事后分析确定了需要改进的关键领域,从而进行了三大修改:1) 采用银/氯化银双结电极以防止离子泄漏;2) 采用保护性抗蚀层以屏蔽单层;3) 采用精确蚀刻以限制半导体材料,从而减少寄生电流。这些优化措施提高了器件的跨导率,确保了器件长时间稳定运行,从而使基于 TMDC 的 EGFET 成为在水环境中进行可靠生物传感的可行候选器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
In-Sensor Computing-Based Smart Sensing Architecture Implemented Using a Dual-Gate Metal-Oxide Thin-Film Transistor Technology Optimizing MoS2 Electrolyte-Gated Transistors: Stability, Performance, and Sensitivity Enhancements Thermally Stable Ag2Se Nanowire Network as an Effective In‐Materio Physical Reservoir Computing Device Aromaticity‐Dependent Memristive Switching Advancing Neural Networks: Innovations and Impacts on Energy Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1