Christopher G. Knight, Océane Nicolitch, Rob I. Griffiths, Tim Goodall, Briony Jones, Carolin Weser, Holly Langridge, John Davison, Ariane Dellavalle, Nico Eisenhauer, Konstantin B. Gongalsky, Andrew Hector, Emma Jardine, Paul Kardol, Fernando T. Maestre, Martin Schädler, Marina Semchenko, Carly Stevens, Maria Α. Tsiafouli, Oddur Vilhelmsson, Wolfgang Wanek, Franciska T. de Vries
{"title":"Soil microbiomes show consistent and predictable responses to extreme events","authors":"Christopher G. Knight, Océane Nicolitch, Rob I. Griffiths, Tim Goodall, Briony Jones, Carolin Weser, Holly Langridge, John Davison, Ariane Dellavalle, Nico Eisenhauer, Konstantin B. Gongalsky, Andrew Hector, Emma Jardine, Paul Kardol, Fernando T. Maestre, Martin Schädler, Marina Semchenko, Carly Stevens, Maria Α. Tsiafouli, Oddur Vilhelmsson, Wolfgang Wanek, Franciska T. de Vries","doi":"10.1038/s41586-024-08185-3","DOIUrl":null,"url":null,"abstract":"<p>Increasing extreme climatic events threaten the functioning of terrestrial ecosystems<sup>1,2</sup>. Because soil microbes govern key biogeochemical processes, understanding their response to climate extremes is crucial in predicting the consequences for ecosystem functioning<sup>3,4</sup>. Here we subjected soils from 30 grasslands across Europe to four contrasting extreme climatic events under common controlled conditions (drought, flood, freezing and heat), and compared the response of soil microbial communities and their functioning with those of undisturbed soils. Soil microbiomes exhibited a small, but highly consistent and phylogenetically conserved, response under the imposed extreme events. Heat treatment most strongly impacted soil microbiomes, enhancing dormancy and sporulation genes and decreasing metabolic versatility. Microbiome response to heat in particular could be predicted by local climatic conditions and soil properties, with soils that do not normally experience the extreme conditions being imposed being most vulnerable. Our results suggest that soil microbiomes from different climates share unified responses to extreme climatic events, but that predicting the extent of community change may require knowledge of the local microbiome. These findings advance our understanding of soil microbial responses to extreme events, and provide a first step for making general predictions about the impact of extreme climatic events on soil functioning.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"46 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08185-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing extreme climatic events threaten the functioning of terrestrial ecosystems1,2. Because soil microbes govern key biogeochemical processes, understanding their response to climate extremes is crucial in predicting the consequences for ecosystem functioning3,4. Here we subjected soils from 30 grasslands across Europe to four contrasting extreme climatic events under common controlled conditions (drought, flood, freezing and heat), and compared the response of soil microbial communities and their functioning with those of undisturbed soils. Soil microbiomes exhibited a small, but highly consistent and phylogenetically conserved, response under the imposed extreme events. Heat treatment most strongly impacted soil microbiomes, enhancing dormancy and sporulation genes and decreasing metabolic versatility. Microbiome response to heat in particular could be predicted by local climatic conditions and soil properties, with soils that do not normally experience the extreme conditions being imposed being most vulnerable. Our results suggest that soil microbiomes from different climates share unified responses to extreme climatic events, but that predicting the extent of community change may require knowledge of the local microbiome. These findings advance our understanding of soil microbial responses to extreme events, and provide a first step for making general predictions about the impact of extreme climatic events on soil functioning.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.