Dual Responsive Magnetic DCR3 Nanoparticles: A New Strategy for Efficiently Targeting Hepatocellular Carcinoma

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-11-27 DOI:10.1002/smll.202402909
Lina Jia, Yuguo Dai, Yingchen Xu, Hongyan Sun, Han Gao, Haiyang Hao, Luyao Wang, Junjie Xu, Juanjuan Shang, Guangming Li, Ye Xu, Lin Feng
{"title":"Dual Responsive Magnetic DCR3 Nanoparticles: A New Strategy for Efficiently Targeting Hepatocellular Carcinoma","authors":"Lina Jia, Yuguo Dai, Yingchen Xu, Hongyan Sun, Han Gao, Haiyang Hao, Luyao Wang, Junjie Xu, Juanjuan Shang, Guangming Li, Ye Xu, Lin Feng","doi":"10.1002/smll.202402909","DOIUrl":null,"url":null,"abstract":"Hepatocellular carcinoma (HCC) is a major cause of cancer deaths globally. Unlike traditional molecularly targeted drugs, magnetically controlled drug delivery to micro/nanorobots enhances precision in targeting tumors, improving drug efficiency and minimizing side effects. This study develops a dual-responsive, magnetically controlled drug delivery system using PEGylated paramagnetic nanoparticles conjugated with decoy receptor 3 (DCR3) antibodies. The clusters demonstrate capabilities for long-range, magnetically driven control and molecular chemotaxis. Paramagnetic PEGylated particles form vortex- and liquid-like drug moieties within a magnetically controlled system. Vortex-like nanoparticle clusters exhibit high controllability and countercurrent movement, while liquid-nanoparticle robot clusters display greater deformability. Upon loading with DCR3 antibodies, the particles navigate along DCR3-protein gradients in blood and tissue, effectively targeting liver tumor sites in vivo. Clusters of DCR3-coupled magnetic nanoparticles target cells that highly express DCR3, thereby effectively inhibiting tumor cell proliferation and migration. Compared with conventional nanomedicine, DCR3-coupled magnetic nanoparticle clusters are capable of delivering controlled drugs over long distances and responding in a molecular-targeting manner. This research is expected to significantly impact the field of precise tumor drug delivery.","PeriodicalId":228,"journal":{"name":"Small","volume":"83 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202402909","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocellular carcinoma (HCC) is a major cause of cancer deaths globally. Unlike traditional molecularly targeted drugs, magnetically controlled drug delivery to micro/nanorobots enhances precision in targeting tumors, improving drug efficiency and minimizing side effects. This study develops a dual-responsive, magnetically controlled drug delivery system using PEGylated paramagnetic nanoparticles conjugated with decoy receptor 3 (DCR3) antibodies. The clusters demonstrate capabilities for long-range, magnetically driven control and molecular chemotaxis. Paramagnetic PEGylated particles form vortex- and liquid-like drug moieties within a magnetically controlled system. Vortex-like nanoparticle clusters exhibit high controllability and countercurrent movement, while liquid-nanoparticle robot clusters display greater deformability. Upon loading with DCR3 antibodies, the particles navigate along DCR3-protein gradients in blood and tissue, effectively targeting liver tumor sites in vivo. Clusters of DCR3-coupled magnetic nanoparticles target cells that highly express DCR3, thereby effectively inhibiting tumor cell proliferation and migration. Compared with conventional nanomedicine, DCR3-coupled magnetic nanoparticle clusters are capable of delivering controlled drugs over long distances and responding in a molecular-targeting manner. This research is expected to significantly impact the field of precise tumor drug delivery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双响应磁性 DCR3 纳米粒子:高效靶向肝细胞癌的新策略
肝细胞癌(HCC)是全球癌症死亡的主要原因。与传统的分子靶向药物不同,微/纳米机器人的磁控给药提高了靶向肿瘤的精确性,提高了药物效率并最大限度地减少了副作用。这项研究利用与诱饵受体 3(DCR3)抗体共轭的 PEG 化顺磁性纳米粒子,开发了一种双重响应的磁控给药系统。该集群展示了长程磁驱动控制和分子趋化的能力。顺磁 PEG 化颗粒在磁控系统中形成涡旋和液态药物分子。漩涡状纳米粒子簇具有很高的可控性和逆流运动性,而液态纳米粒子机器人簇则具有更大的变形性。在装载 DCR3 抗体后,颗粒会沿着血液和组织中的 DCR3 蛋白梯度移动,从而有效锁定体内肝脏肿瘤部位。DCR3耦合磁性纳米粒子集群可靶向高表达DCR3的细胞,从而有效抑制肿瘤细胞的增殖和迁移。与传统的纳米药物相比,DCR3耦合磁性纳米粒子簇能够远距离递送可控药物,并以分子靶向方式做出反应。这项研究有望对肿瘤精准给药领域产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Reversible Sliding Motion by Hole-Injection in Ammonium-Linked Ferrocene, Electronically Decoupled from Noble Metal Substrate by Crown-Ether Template Layer Resurrecting p53 by an Artificial Nano-Protein for Potent Photodynamic Retinoblastoma Therapy Drastically Promoting Rate Capability via Dual-Cations Intercalation of V2O5 Enabling Rapid Zinc-Ion Storage Recent Advances in Metal Halide Perovskites for CO2 Photocatalytic Reduction: An Overview and Future Prospects Optomagnetic Micromirror Arrays for Mapping Large Area Stiffness Distributions of Biomimetic Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1