Enhancing Lithium-Ion Batteries with a 3D Conductive Network Silicon–Carbon Nanotube Composite Anode

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-11-28 DOI:10.1021/acsami.4c15909
Yuru Wang, Zhihua Zeng, Yong Liu, Gang Huang, Pan Zhang, Xiaodong Ma, Fan Gao, Ziqiang Zhang, Ye Wang, Yanqing Wang
{"title":"Enhancing Lithium-Ion Batteries with a 3D Conductive Network Silicon–Carbon Nanotube Composite Anode","authors":"Yuru Wang, Zhihua Zeng, Yong Liu, Gang Huang, Pan Zhang, Xiaodong Ma, Fan Gao, Ziqiang Zhang, Ye Wang, Yanqing Wang","doi":"10.1021/acsami.4c15909","DOIUrl":null,"url":null,"abstract":"To meet the rising demand for energy storage, high-capacity Si anode-based lithium-ion batteries (LIBs) with extended cycle life and fast-charging capabilities are essential. However, Si anodes face challenges such as significant volume expansion and low electrical conductivity. This study synthesizes a porous spherical Si/Multi-Walled Carbon Nanotube (MWCNT)@C anode material via spray drying, combining Si nanoparticles, MWCNT dispersion, sucrose, and carboxymethyl cellulose (CMC). The MWCNT incorporation creates a robust 3D conductive network within the porous microspheres, enhancing Li<sup>+</sup> diffusion and improving fast-charging/discharging performance. After 300 cycles at 1 A g<sup>–1</sup>, the material achieved a discharge capacity of 536.6 mA h g<sup>–1</sup> with 80.5% capacity retention. Additionally, integrating a 3D network of Single-Walled Carbon Nanotubes (SWCNTs) further enhanced capacity retention in a binder-free, self-supporting electrode created through vacuum filtration. The Si/MWCNT@C//LiFePO<sub>4</sub> full cell exhibited an initial Coulombic efficiency (ICE) exceeding 80%, with a specific capacity of 72.4 mA h g<sup>–1</sup> and 79.8% capacity retention after 400 cycles at 1 A g<sup>–1</sup>. This study offers a promising strategy for improving the performance and structural design of Si anodes.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"24 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15909","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To meet the rising demand for energy storage, high-capacity Si anode-based lithium-ion batteries (LIBs) with extended cycle life and fast-charging capabilities are essential. However, Si anodes face challenges such as significant volume expansion and low electrical conductivity. This study synthesizes a porous spherical Si/Multi-Walled Carbon Nanotube (MWCNT)@C anode material via spray drying, combining Si nanoparticles, MWCNT dispersion, sucrose, and carboxymethyl cellulose (CMC). The MWCNT incorporation creates a robust 3D conductive network within the porous microspheres, enhancing Li+ diffusion and improving fast-charging/discharging performance. After 300 cycles at 1 A g–1, the material achieved a discharge capacity of 536.6 mA h g–1 with 80.5% capacity retention. Additionally, integrating a 3D network of Single-Walled Carbon Nanotubes (SWCNTs) further enhanced capacity retention in a binder-free, self-supporting electrode created through vacuum filtration. The Si/MWCNT@C//LiFePO4 full cell exhibited an initial Coulombic efficiency (ICE) exceeding 80%, with a specific capacity of 72.4 mA h g–1 and 79.8% capacity retention after 400 cycles at 1 A g–1. This study offers a promising strategy for improving the performance and structural design of Si anodes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用三维导电网络硅-碳纳米管复合负极增强锂离子电池性能
为了满足日益增长的储能需求,必须使用具有更长循环寿命和快速充电能力的高容量硅阳极锂离子电池(LIB)。然而,硅阳极面临着显著的体积膨胀和低导电性等挑战。本研究通过喷雾干燥法合成了一种多孔球形硅/多壁碳纳米管(MWCNT)@C 负极材料,将硅纳米颗粒、MWCNT 分散体、蔗糖和羧甲基纤维素(CMC)结合在一起。MWCNT 的加入在多孔微球中形成了强大的三维导电网络,增强了 Li+ 的扩散,提高了快速充电/放电性能。在 1 A g-1 条件下循环 300 次后,该材料的放电容量达到 536.6 mA h g-1,容量保持率为 80.5%。此外,将单壁碳纳米管(SWCNT)三维网络集成到通过真空过滤制造的无粘结剂自支撑电极中,进一步提高了容量保持率。Si/MWCNT@C//LiFePO4 全电池的初始库仑效率(ICE)超过了 80%,比容量为 72.4 mA h g-1,在 1 A g-1 下循环 400 次后容量保持率为 79.8%。这项研究为改善硅阳极的性能和结构设计提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Thermal Characterization of Ferroelectric Al1–xBxN for Nonvolatile Memory Enhancing Lithium-Ion Batteries with a 3D Conductive Network Silicon–Carbon Nanotube Composite Anode Post-Transition Metal Dichalcogenide SnS2 Nanoflower/PVDF Composite: A Smart Wearable Self-Powered Mechanosensor Comparative Study of [18F]AlF-LNC1007, [18F]FDG, and [18F]AlF-NOTA-FAPI-04 PET/CT in Breast Cancer Diagnosis: A Methodological Exploration and Analytical Insight Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1