Noncontact Size Estimation of Pressure Ulcers Using IR Thermal Imaging

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-11-08 DOI:10.1109/LSENS.2024.3494843
Bhaskar Pandey;Ajat Shatru Arora;Deepak Joshi
{"title":"Noncontact Size Estimation of Pressure Ulcers Using IR Thermal Imaging","authors":"Bhaskar Pandey;Ajat Shatru Arora;Deepak Joshi","doi":"10.1109/LSENS.2024.3494843","DOIUrl":null,"url":null,"abstract":"Pressure injuries cause discomfort and potential fatality, underscoring the importance of wound assessment. In the post-COVID era, remote monitoring of wounds, particularly through noncontact methods like infrared (IR) thermal imaging and deep learning, is imperative. This letter proposes a deep learning approach for dimension detection from thermal images, trained on data from 18 subjects. Instance segmentation achieved a maximum accuracy of 0.9542, with classification accuracy reaching 0.9922. The model exhibited a root mean square error (RMSE) of 0.1609 cm for measured dimensions, with superior accuracy in detecting wound length (RMSE: 0.1114 cm) compared to width (RMSE: 0.1506 cm).","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10748392/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Pressure injuries cause discomfort and potential fatality, underscoring the importance of wound assessment. In the post-COVID era, remote monitoring of wounds, particularly through noncontact methods like infrared (IR) thermal imaging and deep learning, is imperative. This letter proposes a deep learning approach for dimension detection from thermal images, trained on data from 18 subjects. Instance segmentation achieved a maximum accuracy of 0.9542, with classification accuracy reaching 0.9922. The model exhibited a root mean square error (RMSE) of 0.1609 cm for measured dimensions, with superior accuracy in detecting wound length (RMSE: 0.1114 cm) compared to width (RMSE: 0.1506 cm).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用红外热成像技术非接触式估算褥疮大小
压迫性损伤会造成不适,并可能导致死亡,这凸显了伤口评估的重要性。在后 COVID 时代,对伤口进行远程监测,特别是通过红外热成像和深度学习等非接触式方法进行监测,势在必行。这封信提出了一种从热图像中进行维度检测的深度学习方法,并对来自 18 个受试者的数据进行了训练。实例分割的最高准确率达到 0.9542,分类准确率达到 0.9922。该模型对测量尺寸的均方根误差(RMSE)为 0.1609 厘米,在检测伤口长度(RMSE:0.1114 厘米)方面的准确性优于宽度(RMSE:0.1506 厘米)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Table of Contents Front Cover IEEE Sensors Council Information IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1